Advertisement

Multidimensional urban segregation: toward a neural network measure

  • Madalina Olteanu
  • Aurélien Hazan
  • Marie Cottrell
  • Julien Randon-FurlingEmail author
WSOM 2017
  • 33 Downloads

Abstract

We introduce a multidimensional, neural network approach to reveal and measure urban segregation phenomena, based on the self-organizing map algorithm (SOM). The multidimensionality of SOM allows one to apprehend a large number of variables simultaneously, defined on census blocks or other types of statistical blocks, and to perform clustering along them. Levels of segregation are then measured through correlations between distances on the neural network and distances on the actual geographical map. Further, the stochasticity of SOM enables one to quantify levels of heterogeneity across census blocks. We illustrate this new method on data available for the city of Paris.

Keywords

Segregation Machine learning Neural networks Self-organizing maps 

Notes

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Intégration des stations du réseau ferré RATP (2012). http://openstreetmap.fr/blogs/cquest/stations-ratp. Accessed March 2017
  2. 2.
    Arribas-Bel D, Nijkamp P, Scholten H (2011) Multidimensional urban sprawl in Europe: a self-organizing map approach. Comput Environ Urban Syst 35(4):263–275CrossRefGoogle Scholar
  3. 3.
    Banos A (2012) Network effects in Schelling’s model of segregation: new evidence from agent-based simulation. Environ Plan B Plan Des 39(2):393–405CrossRefGoogle Scholar
  4. 4.
    Batty M (1976) Entropy in spatial aggregation. Geogr Anal 8(1):1–21MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benenson I, Hatna E, Or E (2009) From Schelling to spatially explicit modeling of urban ethnic and economic residential dynamics. Sociol Methods Res 37(4):463–497MathSciNetCrossRefGoogle Scholar
  6. 6.
    de Bodt E, Cottrell M, Verleysen M (2002) Statistical tools to assess the reliability of self-organizing maps. Neural Netw 15(8–9):967–978CrossRefzbMATHGoogle Scholar
  7. 7.
    Boelaert J, Bendhaiba L, Olteanu M, Villa-Vialaneix N (2014) SOMbrero: an R package for numeric and non-numeric self-organizing maps. Springer, Berlin, pp 219–228Google Scholar
  8. 8.
    Bourgeois N, Cottrell M, Déruelle B, Lamassé S, Letrémy P (2015) How to improve robustness in Kohonen maps and display additional information in factorial analysis: application to text mining. Neurocomputing 147:120–135CrossRefGoogle Scholar
  9. 9.
    Bourgeois N, Cottrell M, Lamassé S, Olteanu M (2015) Search for meaning through the study of co-occurrences in texts. International work-conference on artificial neural networks. Springer, Berlin, pp 578–591Google Scholar
  10. 10.
    Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys 81(2):591CrossRefGoogle Scholar
  11. 11.
    Clark WA (1991) Residential preferences and neighborhood racial segregation: a test of the Schelling segregation model. Demography 28(1):1–19CrossRefGoogle Scholar
  12. 12.
    Clark WA, Fossett M (2008) Understanding the social context of the Schelling segregation model. Proc Natl Acad Sci 105(11):4109–4114CrossRefGoogle Scholar
  13. 13.
    Cortez V, Medina P, Goles E, Zarama R, Rica S et al (2015) Attractors, statistics and fluctuations of the dynamics of the Schelling’s model for social segregation. Eur Phys J B 88:25CrossRefGoogle Scholar
  14. 14.
    Cottrell M, Olteanu M, Randon-Furling J, Hazan A (2017) Multidimensional urban segregation: an exploratory case study. In: 2017 12th International workshop on self-organizing maps and learning vector quantization, clustering and data visualization (WSOM). IEEE, pp 1–7Google Scholar
  15. 15.
    Crane J (1991) The epidemic theory of ghettos and neighborhood effects on dropping out and teenage childbearing. Am. J Sociol 96(5):1226–1259CrossRefGoogle Scholar
  16. 16.
    Dall’Asta L, Castellano C, Marsili M (2008) Statistical physics of the Schelling model of segregation. J Stat Mech Theory Exp 07:L07002Google Scholar
  17. 17.
    Durrett R, Zhang Y (2014) Exact solution for a metapopulation version of Schelling’s model. Proc Natl Acad Sci 111(39):14036–14041MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feitosa FF, Camara G, Monteiro AMV, Koschitzki T, Silva MP (2007) Global and local spatial indices of urban segregation. Int J Geogr Inf Sci 21(3):299–323CrossRefGoogle Scholar
  19. 19.
    Gauvin L, Nadal JP, Vannimenus J (2010) Schelling segregation in an open city: a kinetically constrained Blume–Emery–Griffiths spin-1 system. Phys Rev E 81(6):066120CrossRefGoogle Scholar
  20. 20.
    Gauvin L, Vannimenus J, Nadal JP (2009) Phase diagram of a Schelling segregation model. Eur Phys J B 70(2):293–304CrossRefGoogle Scholar
  21. 21.
    Grauwin S, Bertin E, Lemoy R, Jensen P (2009) Competition between collective and individual dynamics. Proc Natl Acad Sci 106(49):20622–20626CrossRefGoogle Scholar
  22. 22.
    Hatna E, Benenson I (2012) The Schelling model of ethnic residential dynamics: beyond the integrated-segregated dichotomy of patterns. J Artif Soc Soc Simul 15(1):6CrossRefGoogle Scholar
  23. 23.
    Hatna E, Benenson I (2015) Combining segregation and integration: Schelling model dynamics for heterogeneous population. J Artif Soc Soc Simul 18(4):1–15CrossRefGoogle Scholar
  24. 24.
    Hazan A, Randon-Furling J (2013) A Schelling model with switching agents: decreasing segregation via random allocation and social mobility. Eur Phys J B 86(10):1–9MathSciNetCrossRefGoogle Scholar
  25. 25.
    Henry AD, Prałat P, Zhang CQ (2011) Emergence of segregation in evolving social networks. Proc Natl Acad Sci 108(21):8605–8610MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hong SY, O’Sullivan D, Sadahiro Y (2014) Implementing spatial segregation measures in R. PloS ONE 9(11):e113767CrossRefGoogle Scholar
  27. 27.
    Iceland J (2004) The multigroup entropy index. US Census Bur 31:2006Google Scholar
  28. 28.
    Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kohonen T (2012) Self-organizing maps. Springer series in information sciences. Springer, BerlinzbMATHGoogle Scholar
  30. 30.
    Laurie AJ, Jaggi NK (2003) Role of “vision” in neighbourhood racial segregation: a variant of the Schelling segregation model. Urban Stud 40(13):2687–2704CrossRefGoogle Scholar
  31. 31.
    Macy MW, Willer R (2002) From factors to factors: computational sociology and agent-based modeling. Ann Rev Sociol 28(1):143–166CrossRefGoogle Scholar
  32. 32.
    Pancs R, Vriend NJ (2007) Schelling’s spatial proximity model of segregation revisited. J Public Econ 91(1):1–24CrossRefGoogle Scholar
  33. 33.
    Pollicott M, Weiss H (2001) The dynamics of Schelling-type segregation models and a nonlinear graph laplacian variational problem. Adv Appl Math 27(1):17–40MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Reardon SF, Firebaugh G (2002) Measures of multigroup segregation. Sociol Methodol 32(1):33–67CrossRefGoogle Scholar
  35. 35.
    Reardon SF, O’Sullivan D (2004) Measures of spatial segregation. Sociol Methodol 34(1):121–162CrossRefGoogle Scholar
  36. 36.
    Rogers T (2011) A unified framework for Schelling’s model of segregation. J Stat Mech Theory Exp 07:P07006Google Scholar
  37. 37.
    Sahasranaman A, Jensen HJ (2016) Dynamics of transformation from segregation to mixed wealth cities. PloS ONE 11(11):e0166960CrossRefGoogle Scholar
  38. 38.
    Schelling TC (1969) Models of segregation. Am Econ Rev 59(2):488–493Google Scholar
  39. 39.
    Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186CrossRefzbMATHGoogle Scholar
  40. 40.
    Singh A, Vainchtein D, Weiss H (2009) Schelling’s segregation model: parameters, scaling, and aggregation. Demogr Res 21:341CrossRefGoogle Scholar
  41. 41.
    Stauffer D, Solomon S (2007) Ising, Schelling and self-organising segregation. Eur Phys J B 57(4):473–479CrossRefGoogle Scholar
  42. 42.
    Theil H, Finizza AJ (1971) A note on the measurement of racial integration of schools by means of informational concepts. Taylor & Francis, RoutledgeCrossRefGoogle Scholar
  43. 43.
    Vinković D, Kirman A (2006) A physical analogue of the Schelling model. Proc Natl Acad Sci 103(51):19261–19265CrossRefGoogle Scholar
  44. 44.
    Wei C, Cabrera-Barona P, Blaschke T (2016) Local geographic variation of public services inequality: does the neighborhood scale matter? Int J Environ Res Public Health 13(10):981CrossRefGoogle Scholar
  45. 45.
    Wu Q, Cheng J, Chen G, Hammel DJ, Wu X (2014) Socio-spatial differentiation and residential segregation in the Chinese city based on the 2000 community-level census data: a case study of the inner city of Nanjing. Cities 39:109–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.SAMM (EA4543)Université Paris 1 Panthéon-SorbonneParisFrance
  2. 2.LISSI (EA 3956), Senart-FB Institute of TechnologyUniversité Paris-EstLieusaintFrance
  3. 3.MaIAGE, INRA, Université Paris-SaclayJouy-en-JosasFrance

Personalised recommendations