Skip to main content
Log in

Multi-scale multi-block covariance descriptor with feature selection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript


This paper investigates a compact face texture representation able to cover the most discriminant features of facial images. The compactness is achieved by the proposed Pyramid Multi-Level (PML) covariance texture descriptor and the feature selection process that is applied on the raw extracted features. In fact, we introduce a framework based mainly on two new aspects. Firstly, we consider an extension of the original covariance descriptor that relies on de-noised covariance matrices obtained using texture descriptors such as local binary pattern and quaternionic local ranking binary pattern images. Secondly, we exploit the resulting covariance descriptor using a PML face representation which allows a multi-level multi-scale feature extraction. Experiments conducted on four public face datasets show the efficacy of the proposed face descriptor and the associated selection schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'12), vol 1. Curran Associates Inc., USA, pp 1097–1105

    Google Scholar 

  2. Memon I, Chen L, Majid A, Lv M, Hussain I, Chen G (2015) Travel recommendation using geo-tagged photos in social media for tourist. Wirel Pers Commun 80(4):13471362

    Article  Google Scholar 

  3. Zhou Z, Feng J (2017) Deep forest: towards an alternative to deep neural networks. arXiv:1702.08835v2

  4. Lou Z, Alnajar F, Alvarez JM, Hu N, Gevers T (2018) Expression-invariant age estimation using structured learning. IEEE Trans Pattern Anal Mach Intell 40(2):365–375

    Article  Google Scholar 

  5. Zhu Q, Yuan N, Guan D, Xu N, Li H (2018) An alternative to face image representation and classification. Int J Mach Learn Cybern.

    Article  Google Scholar 

  6. Memon MH, Li J, Memon I, Shaikh RA, Mangi FA (2015) Efficient object identification and multiple regions of interest using CBIR based on relative locations and matching regions. In: 12th International computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp 247–250

  7. Memon MH, Li J, Memon I, Arain QA (2017) GEO matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimed Tools Appl 76(14):15377–15411

    Article  Google Scholar 

  8. Pietikäinen M, Ojala T, Xu Z (2000) Rotation-invariant texture classification using feature distributions. Pattern Recognit 33(1):43–52

    Article  Google Scholar 

  9. Nanni L, Brahnam S, Lumini A (2012) A simple method for improving local binary patterns by considering non-uniform patterns. Pattern Recognit 45(10):3844–3852

    Article  Google Scholar 

  10. Yang B, Chen S (2013) A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing 120:365–379 (Image Feature Detection and Description)

    Article  Google Scholar 

  11. Girish GN, Shrinivasa Naika CL, Das PK (2014) Face recognition using MB-LBP and PCA: a comparative study. In: International conference on computer communication and informatics, pp 1–6

  12. Takala V, Ahonen T, Pietikainen M (2005) Block-based methods for image retrieval using local binary patterns. In: Image analysis, SCIA, volume LNCS, 3540

  13. Ojala T, Pietikäinen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  14. Zhou H, Wang R, Wang C (2008) A novel extended local-binary-pattern operator for texture analysis. Inf Sci 178(22):4314–4325

    Article  MATH  Google Scholar 

  15. Nguyen DT, Cho SR, Park KR (2014) Human age estimation based on multi-level local binary pattern and regression method. In: Park J, Pan Y, Kim CS, Yang Y (eds) Future information technology. Lecture notes in electrical engineering, vol 309. Springer, Berlin, Heidelberg

  16. Bekhouche S, Ouafi A, Benlamoudi A, Taleb-Ahmed A, Hadid A (2015) Automatic age estimation and gender classification in the wild. In: Proceeding of the international conference on automatic control, telecommunications and signals ICATS’15

  17. Wang W, Chen W, Xu D (2011) Pyramid-based multi-scale lbp features for face recognition. In: International conference on multimedia and signal processing (CMSP), vol 1, pp 151–155

  18. Bekhouche SE, Ouafi A, Dornaika F, Taleb-Ahmed A, Hadid A (2017) Pyramid multi-level features for facial demographic estimation. Expert Syst Appl 80(Supplement C):297–310

    Article  Google Scholar 

  19. Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579

    Article  MathSciNet  MATH  Google Scholar 

  20. Kannala J, Rahtu E (2012) BSIF: binarized statistical image features. In: 21st International conference on pattern recognition (ICPR), pp 1363–1366

  21. Dornaika F, Moujahid A, El Merabet Y, Ruichek Y (2016) Building detection from orthophotos using a machine learning approach: an empirical study on image segmentation and descriptors. Expert Syst Appl 58:130–142

    Article  Google Scholar 

  22. Moujahid A, Dornaika F (2018) A pyramid multi-level face descriptor: application to kinship verification. Multimed Tools Appl.

    Article  Google Scholar 

  23. Huang SH (2015) Supervised feature selection: a tutorial. Artif Intell Res 4(2):22–37

    Article  Google Scholar 

  24. Peng Z, Gurram P, Kwon H, Yin W (2015) Sparse kernel learning-based feature selection for anomaly detection. IEEE Trans Aerosp Electron Syst 51(3):1698–1716

    Article  Google Scholar 

  25. Koller D, Sahami M (1996) Toward optimal feature selection. In: Saitta L (ed) Proceedings of the thirteenth international conference on international conference on machine learning (ICML’96). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 284–292

  26. Robnik-Sikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53:23

    Article  MATH  Google Scholar 

  27. He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: Weiss Y, Schlkopf B, Platt JC (eds) Proceedings of the 18th international conference on neural information processing systems (NIPS’05). MIT Press, Cambridge, MA, USA, pp 507–514

  28. Gu Q, Li Z, Han J (2011) Generalized Fisher score for feature selection. In: Cozman F, Pfeffer A (eds) Proceedings of the twenty-seventh conference on uncertainty in artificial intelligence, (UAI’11). AUAI Press, Arlington, Virginia, United States, pp 266–273

  29. Kumar V, Minz S (2014) A survey on feature selection methods. Smart Comput Rev 4(3):216–2229

    Article  Google Scholar 

  30. Chandrashekar G, Sahi F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28

    Article  Google Scholar 

  31. Davarpanah SH, Khalid F, Nurliyana AL, Golchin M (2016) A texture descriptor: background local binary pattern (bglbp). Multimed Tools Appl 75(11):6549–6568

    Article  Google Scholar 

  32. Bianconi F, Bello R, Napoletano P, Di Maria F (2017) Improved opponent colour local binary patterns for colour texture classification. In: Workshop computational color imaging workshop, CCIW

  33. Silva C, Bouwmans T, Frélicot C (2015) An extended center-symmetric local binary pattern for background modeling and subtraction in videos. In: Proceedings of the 10th international conference on computer vision theory and applications, volume 1: VISAPP, (VISIGRAPP 2015), pp 395–402

  34. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19:1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  35. Ahonen T, Hadid A, Pietikinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  36. Mäenpää T, Pietikainen M (2004) Classification with color and texture: jointly or separately? Pattern Recognit 37(8):1629–1640

    Article  Google Scholar 

  37. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Computer Society conference on computer vision and pattern recognition, CVPR 2005, vol 1, pp 886–893. IEEE

  38. Tuzel O, Porikli F, Meer P (2006) A fast descriptor for detection and classification. In: European conference on computer vision, pp 589–600

  39. Jushan B, Shuzhong S (2011) Estimating high dimensional covariance matrices and its applications. Ann Econ Finance 12(2):199–215

    Google Scholar 

  40. Laloux L, Cizeau P, Bouchaud JP, Potters M (1999) Noise dressing of financial correlation matrices. Phys Rev Lett 83:1467

    Article  Google Scholar 

  41. Laloux L, Cizeau P, Bouchaud JP, Potters M (2000) Random matrix theory and financial correlations. Int J Theor Appl Finance 3:391–397

    Article  MATH  Google Scholar 

  42. Szeliski R (2011) Computer vision: algorithms and applications. In: Gries D, Schneider FB (eds) Computer vision. Springer, London, p 812

    Chapter  MATH  Google Scholar 

  43. Guan D, Yuan W, Lee Y-K, Najeebullah K, Rasel MK (2014) A review of ensemble learning based feature selection. IETE Tech Rev 31(3):190–198

    Article  Google Scholar 

  44. The Georgia Tech face database (1999).

  45. Belhumeur PN, Hespanha JP, Kriegman DJ (1996) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. In: Bernard B, Roberto C (eds) Computer vision ECCV ’96, volume 1064 of lecture notes in computer science. Springer, Berlin, pp 43–58

  46. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the second IEEE workshop on applications of computer vision, pp 138–142

  47. The FEI face database (2006).

  48. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: International conference on computer vision, Barcelona, pp 471–478.

  49. Yang A, Sastry S, Ganesh A, Ma Y (2010) Fast \(\ell _1\)-minimization algorithms and an application in robust face recognition: a review. In: IEEE international conference on image processing

  50. Fan Z, Ni M, Zhu Q, Sun C, Kang L (2015) L0-norm sparse representation based on modified genetic algorithm for face recognition. J Vis Commun Image Represent 28:15–20

    Article  Google Scholar 

  51. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu Z, Pu J, Huang T, Qiu Y (2013) A novel classification method for palmprint recognition based on reconstruction error and normalized distance. Appl Intell 39:407414

    Google Scholar 

  53. Yang Z, Jia D, Ioannidis S, Mi N, Sheng B (2018) Intermediate data caching optimization for multi-stage and parallel big data frameworks. In: IEEE 11th international conference on cloud computing (CLOUD)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abdelmalik Moujahid.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moujahid, A., Dornaika, F. Multi-scale multi-block covariance descriptor with feature selection. Neural Comput & Applic 32, 6283–6294 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: