Prediction of pK(a) values of neutral and alkaline drugs with particle swarm optimization algorithm and artificial neural network


A prediction model of pKa values of neutral and alkaline drugs based on particle swarm optimization algorithm and back propagation artificial neural network, called PSO–BP ANN, was established. PSO–BP ANN model was proposed using back propagation artificial neural network trained by particle swarm optimization algorithm, and used to predict the pKa values. The five parameters, including relative N atom number, Randic index (order 3), relative negative charge, relative negative charge surface area and maximum atomic net charge, were selected by particle swarm optimization algorithm and used as input variables of the model. The output variable in the proposed model was pKa values. The experimental results showed that the three layers (5–7–1) prediction model had a good prediction performance. The absolute mean relative error, root mean square error of prediction and square correlation coefficient were 0.5728, 0.0512 and 0.9169, respectively. The pKa values of neutral and alkaline drugs were positively correlated with the value of maximum atomic net charge, but the pKa value decreased with the increase in the other four parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Charifson PS, Walters WP (2014) Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem 57(23):9701–9717.

    Article  Google Scholar 

  2. 2.

    Wang L, Zhang M, Alexov E (2016) DelPhiPKa web server: predicting pK(a) of proteins, RNAs and DNAs. Bioinformatics 32(4):614–615.

    Article  Google Scholar 

  3. 3.

    Bochevarov AD, Watson MA, Greenwood JR (2016) Multiconformation, density functional theory-based pk(a) prediction in application to large, flexible organic molecules with diverse functional groups. J Chem Theory Comput 12(12):6001–6019.

    Article  Google Scholar 

  4. 4.

    Peng YH, Alexov E (2017) Computational investigation of proton transfer, pKa shifts and pH-optimum of protein-DNA and protein-RNA complexes. Proteins Struct Funct Bioinform 85(2):282–295.

    Article  Google Scholar 

  5. 5.

    Wang H, Jiang MY, Li SJ, Hse CY, Jin CD, Sun FL, Li Z (2017) Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure-activity relationship. R Soc Open Sci 4(9):170516.

    Article  Google Scholar 

  6. 6.

    Das R, Wales DJ (2017) Machine learning landscapes and predictions for patient outcomes. R Soc Open Sci 4(7):170175.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Balaji S, Revathi N (2016) A new approach for solving set covering problem using jumping particle swarm optimization method. Nat Comput 15(3):503–517.

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Karami H, Karimi S, Bonakdari H, Shamshirband S (2018) Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming. Neural Comput Appl 29(11):983–989.

    Article  Google Scholar 

  9. 9.

    Arefi-Oskoui S, Khataee A, Vatanpour V (2017) Modeling and optimization of NLDH/PVDF ultrafiltration nanocomposite membrane using artificial neural network-genetic algorithm hybrid. ACS Comb Sci 19(7):464–477.

    Article  Google Scholar 

  10. 10.

    Saidi-Mehrabad M, Dehnavi-Arani S, Evazabadian F, Mahmoodian V (2015) An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Comput Ind Eng 86:2–13.

    Article  Google Scholar 

  11. 11.

    Tran DC, Wu ZJ, Wang ZL, Deng CS (2015) A novel hybrid data clustering algorithm based on artificial bee colony algorithm and K-means. Chin J Electron 24(4):694–701.

    Article  Google Scholar 

  12. 12.

    Mirabi M, Seddighi P (2018) Hybrid ant colony optimization for capacitated multiple-allocation cluster hub location problem. Artif Intell Eng Des Anal Manuf 32(1):44–58.

    Article  Google Scholar 

  13. 13.

    Zuvela P, Liu JJ, Macur K, Baczek T (2015) Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms. Anal Chem 87(19):9876–9883.

    Article  Google Scholar 

  14. 14.

    Pavao LV, Borba Costa CB, Ravagnani MASS (2017) Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization. Chem Eng Sci 158:96–107.

    Article  Google Scholar 

  15. 15.

    Niu C, Yuan YH, Guo H, Wang X, Yue TL (2018) Recognition of osmotolerant yeast spoilage in kiwi juices by near-infrared spectroscopy coupled with chemometrics and wavelength selection. RSC Adv 8(1):222–229.

    Article  Google Scholar 

  16. 16.

    Mengshan L, Liang L, Xingyuan H, Hesheng L, Bingsheng C, Lixin G, Yan W (2017) Prediction of supercritical carbon dioxide solubility in polymers based on hybrid artificial intelligence method integrated with the diffusion theory. RSC Adv 7(78):49817–49827.

    Article  Google Scholar 

  17. 17.

    Kiran MS (2017) Particle swarm optimization with a new update mechanism. Appl Soft Comput 60:670–678.

    Article  Google Scholar 

  18. 18.

    Jiang F, Xia HY, Tran QA, Ha QM, Tran NQ, Hu JK (2017) A new binary hybrid particle swarm optimization with wavelet mutation. Knowl Based Syst 130:90–101.

    Article  Google Scholar 

  19. 19.

    Zuvela P, David J, Wong MW (2018) Interpretation of ANN-based QSAR models for prediction of antioxidant activity of flavonoids. J Comput Chem 39(16):953–963.

    Article  Google Scholar 

  20. 20.

    Li MS, Zhang HJ, Chen BS, Wu Y, Guan LX (2018) Prediction of pKa values for neutral and basic drugs based on hybrid artificial intelligence methods. Sci Rep 8(1):3991.

    Article  Google Scholar 

  21. 21.

    Zhu QL, Lin QZ, Chen WN, Wong KC, Coello CAC, Li JQ, Chen JY, Zhang J (2017) An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern 47(9):2794–2808.

    Article  Google Scholar 

  22. 22.

    Yang DX, Liu ZJ, Yi P (2017) Computational efficiency of accelerated particle swarm optimization combined with different chaotic maps for global optimization. Neural Comput Appl 28:S1245–S1264.

    Article  Google Scholar 

  23. 23.

    Yan J, He WX, Jiang XL, Zhang ZL (2017) A novel phase performance evaluation method for particle swarm optimization algorithms using velocity-based state estimation. Appl Soft Comput 57:517–525.

    Article  Google Scholar 

  24. 24.

    Shirazian S, Alibabaei M (2017) Using neural networks coupled with particle swarm optimization technique for mathematical modeling of air gap membrane distillation (AGMD) systems for desalination process. Neural Comput Appl 28(8):2099–2104.

    Article  Google Scholar 

  25. 25.

    Date Y, Kikuchi J (2018) Application of a deep neural network to metabolomics studies and its performance in determining important variables. Anal Chem 90(3):1805–1810.

    Article  Google Scholar 

  26. 26.

    Chen J, Hu Q, Xue X, Ha M, Ma L (2017) Support function machine for set-based classification with application to water quality evaluation. Inf Sci 388:48–61.

    MathSciNet  Article  Google Scholar 

  27. 27.

    Koutsoukas A, Monaghan KJ, Li XL, Huan J (2017) Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J Cheminform.

    Article  Google Scholar 

  28. 28.

    Li L, Chakravorty A, Alexov E (2017) DelPhiForce, a tool for electrostatic force calculations: applications to macromolecular binding. J Comput Chem 38(9):584–593.

    Article  Google Scholar 

  29. 29.

    Dardonville C, Caine BA, Navarro de la Fuente M, Martin Herranz G, Corrales Mariblanca B, Popelier PLA (2017) Substituent effects on the basicity (pK(a)) of aryl guanidines and 2-(arylimino) imidazolidines: correlations of pH-metric and UV-metric values with predictions from gas-phase ab initio bond lengths. New J Chem 41(19):11016–11028.

    Article  Google Scholar 

  30. 30.

    Heidarzadeh N (2017) A practical low-cost model for prediction of the groundwater quality using artificial neural networks. J Water Supply Res Technol AQUA 66(2):86–95

    Article  Google Scholar 

  31. 31.

    Han S, Ko Y, Kim J, Hong T (2018) Housing market trend forecasts through statistical comparisons based on big data analytic methods. J Manag Eng 34(2):04017054

    Article  Google Scholar 

  32. 32.

    Hasanloei MAV, Sheikhpour R, Sarram MA, Sheikhpour E, Sharifi H (2018) A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities. J Comput Aided Mol Des 32(2):375–384.

    Article  Google Scholar 

  33. 33.

    Wang L, You ZH, Chen X, Xia SX, Liu F, Yan X, Zhou Y, Song KJ (2018) A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network. J Comput Biol 25(3):361–373.

    MathSciNet  Article  Google Scholar 

  34. 34.

    Zeinali Y, Story BA (2017) Competitive probabilistic neural network. Integr Comput Aided Eng 24(2):105–118.

    Article  Google Scholar 

  35. 35.

    Bui KTT, Bui DT, Zou JG, Doan CV, Revhaug I (2018) A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput Appl 29(12):1495–1506.

    Article  Google Scholar 

  36. 36.

    Hase F, Kreisbeck C, Aspuru-Guzik A (2017) Machine learning for quantum dynamics: deep learning of excitation energy transfer properties. Chem Sci 8(12):8419–8426.

    Article  Google Scholar 

  37. 37.

    Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38(16):1291–1307.

    Article  Google Scholar 

  38. 38.

    Polanski J, Walczak B (2000) The comparative molecular surface analysis (COMSA): a novel tool for molecular design. Comput Chem 24(5):615–625.

    Article  Google Scholar 

  39. 39.

    Luan F, Ma WP, Zhang HX, Zhang XY, Liu MC, Hu ZD, Fan BT (2005) Prediction of pK(a) for neutral and basic drugs based on radial basis function neural networks and the heuristic method. Pharm Res 22(9):1454–1460.

    Article  Google Scholar 

  40. 40.

    Luan F, Xu X, Liu HT, Cordeiro M (2013) Review of quantitative structure-activity/property relationship studies of dyes: recent advances and perspectives. Color Technol 129(3):173–186.

    Article  Google Scholar 

  41. 41.

    Marjani A, Shirazian S, Asadollahzadeh M (2018) Topology optimization of neural networks based on a coupled genetic algorithm and particle swarm optimization techniques (c-GA-PSO-NN). Neural Comput Appl 29(11):1073–1076.

    Article  Google Scholar 

  42. 42.

    Wang H, Sun H, Li CH, Rahnamayan S, Pan JS (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135.

    MathSciNet  Article  Google Scholar 

  43. 43.

    Martinez-Vargas A, Andrade AG (2013) Comparing particle swarm optimization variants for a cognitive radio network. Appl Soft Comput 13(2):1222–1234.

    Article  Google Scholar 

  44. 44.

    Xiao Y, Xiao J, Lu FB, Wang SY (2013) Ensemble ANNs-PSO-GA approach for day-ahead stock e-exchange prices forecasting. Int J Comput Intell Syst 6(1):96–114.

    Article  Google Scholar 

  45. 45.

    Wang HS, Wang YN, Wang YC (2013) Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Syst Appl 40(2):418–428.

    Article  Google Scholar 

  46. 46.

    Sermpinis G, Theofilatos K, Karathanasopoulos A, Georgopoulos EF, Dunis C (2013) Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization. Eur J Oper Res 225(3):528–540.

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Li M, Huang X, Liu H, Liu B, Wu Y, Wang L (2015) Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means. RSC Adv 5(56):45520–45527.

    Article  Google Scholar 

  48. 48.

    Li M, Wu W, Chen B, Wu Y, Huang X (2017) Solubility prediction of gases in polymers based on an artificial neural network: a review. RSC Adv 7(56):35274–35282.

    Article  Google Scholar 

  49. 49.

    Zhang L, Wang FL, Sun T, Xu B (2018) A constrained optimization method based on BP neural network. Neural Comput Appl 29(2):413–421.

    Article  Google Scholar 

  50. 50.

    Balabin RM, Smirnov SV (2011) Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Anal Chim Acta 692(1–2):63–72.

    Article  Google Scholar 

  51. 51.

    Hu WB, Wang H, Qiu ZY, Nie C, Yan LP (2018) A quantum particle swarm optimization driven urban traffic light scheduling model. Neural Comput Appl 29(3):901–911.

    Article  Google Scholar 

  52. 52.

    Kalaiarasi N, Dash SS, Padmanaban S, Paramasivam S, Morati PK (2018) Maximum power point tracking implementation by dspace controller integrated through z-source inverter using particle swarm optimization technique for photovoltaic applications. Appl Sci Basel.

    Article  Google Scholar 

  53. 53.

    Das GS (2017) Forecasting the energy demand of Turkey with a NN based on an improved Particle Swarm Optimization. Neural Comput Appl 28:S539–S549.

    Article  Google Scholar 

  54. 54.

    Javidrad F, Nazari M (2017) A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl Soft Comput 60:634–654.

    Article  Google Scholar 

  55. 55.

    Eckert F, Klamt A (2006) Accurate prediction of basicity in aqueous solution with COSMO-RS. J Comput Chem 27(1):11–19.

    Article  Google Scholar 

  56. 56.

    Kromann JC, Larsen F, Moustafa H, Jensen JH (2016) Prediction of pKa values using the PM6 semiempirical method. Peerj.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 51663001, 51463015, 61741103). The authors report no conflicts of interests in this paper.

Author information



Corresponding authors

Correspondence to Bingsheng Chen or Mengshan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhang, H. & Li, M. Prediction of pK(a) values of neutral and alkaline drugs with particle swarm optimization algorithm and artificial neural network. Neural Comput & Applic 31, 8297–8304 (2019).

Download citation


  • pKa value
  • Particle swarm optimization
  • Back propagation
  • Artificial neural network