A new EEG software that supports emotion recognition by using an autonomous approach


Human behavior is manly addressed by emotions. One of the most accepted models that represent emotions is known as the circumplex model. This model organizes emotions into points on a bidimensional plane: valence and arousal. Despite the importance of the emotion recognition, there are limited initiatives that seek to classify emotions easily in an uncontrolled environment. In this work, we present the architecture and the design of an extensible software which allows recognizing and classifying emotions by using a low-cost EEG. The proposed software implements an emotion classifier although a support vector machines (SVM) are boosted with an autonomous bio-inspired approach. The contribution was experimentally evaluated by taking a set of well-known validated EEG Databases for Emotion Recognition. Computational experiments show promising results. Using our proposal for EEG emotion classification, we reach an accuracy close to 95%. The results obtained confirm that our approach is able to overcome to a commonly used SVM classifier and that the proposed software can be useful in real environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.


  2. 2.


  3. 3.



  1. 1.

    Pekrun R (1992) The impact of emotions on learning and achievement: towards a theory of cognitive/motivational mediators. Appl Psychol 41(4):359–376

    Article  Google Scholar 

  2. 2.

    Ibáñez N (2002) Emotions in the classroom. Estudios pedagógicos (Valdivia). https://doi.org/10.4067/s0718-07052002000100002

    Article  Google Scholar 

  3. 3.

    Marchand GC, Gutierrez AP (2012) The role of emotion in the learning process: Comparisons between online and face-to-face learning settings. Internet High Educ 15(3):150–160. https://doi.org/10.1016/j.iheduc.2011.10.001

    Article  Google Scholar 

  4. 4.

    Oatley K, Keltner D, Jenkins JM (2006) Understanding emotions. Blackwell Publishing, Hoboken

    Google Scholar 

  5. 5.

    Lee W, Norman MD (2016) Affective computing as complex systems science. Procedia Comput Sci 95:18–23

    Article  Google Scholar 

  6. 6.

    Russell JA (1980) A circumplex model of affect. J Personal Soc Psychol 39(6):1161

    Article  Google Scholar 

  7. 7.

    Hu X, Yu J, Song M, Yu C, Wang F, Sun P, Wang D, Zhang D (2017) EEG correlates of ten positive emotions. Front Hum Neurosci 11:26. https://doi.org/10.3389/fnhum.2017.00026

    Article  Google Scholar 

  8. 8.

    Chen M, Han J, Guo L, Wang J, Patras I (2015) Identifying valence and arousal levels via connectivity between EEG channels. In: 2015 international conference on affective computing and intelligent interaction (ACII). IEEE. https://doi.org/10.1109/acii.2015.7344552

  9. 9.

    Sanei S, Chambers JA (2007) EEG signal processing. Wiley, Hoboken

    Google Scholar 

  10. 10.

    LeDoux JE (2000) Emotion circuits in the brain. Ann Rev Neurosci 23(1):155–184. https://doi.org/10.1146/annurev.neuro.23.1.155

    MathSciNet  Article  Google Scholar 

  11. 11.

    Wang XW, Nie D, Lu BL (2014) Emotional state classification from EEG data using machine learning approach. Neurocomputing 129:94–106. https://doi.org/10.1016/j.neucom.2013.06.046

    Article  Google Scholar 

  12. 12.

    Fredrickson BL (1998) What good are positive emotions? Rev General Psychol 2(3):300–319. https://doi.org/10.1037/1089-2680.2.3.300

    MathSciNet  Article  Google Scholar 

  13. 13.

    Schunk DH (2013) Motivation in education: theory, research, and applications, 4th edn. Pearson, London

    Google Scholar 

  14. 14.

    Teplan M et al (2002) Fundamentals of EEG measurement. Meas Sci Rev 2(2):1–11

    Google Scholar 

  15. 15.

    Luck SJ (2014) An introduction to the event-related potential technique. MIT press, Cambridge

    Google Scholar 

  16. 16.

    Weinberg A, Hajcak G (2010) Beyond good and evil: the time-course of neural activity elicited by specific picture content. Emotion 10(6):767–782. https://doi.org/10.1037/a0020242

    Article  Google Scholar 

  17. 17.

    Hajcak G, Olvet DM (2008) The persistence of attention to emotion: brain potentials during and after picture presentation. Emotion 8(2):250–255. https://doi.org/10.1037/1528-3542.8.2.250

    Article  Google Scholar 

  18. 18.

    Wang Z, Xue X (2014) Multi-class support vector machine. Springer, Cham, pp 23–28. https://doi.org/10.1007/978-3-319-02300-7_2

    Google Scholar 

  19. 19.

    Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Ali M, Al Machot F, Mosa AH, Kyamakya K (2016) A novel EEG-based emotion recognition approach for e-healthcare applications. In: Proceedings of the 31st annual ACM symposium on applied computing. ACM, pp 162–164

  21. 21.

    Zhang Q, Lee M (2009) Analysis of positive and negative emotions in natural scene using brain activity and GIST. Neurocomputing 72(4–6):1302–1306. https://doi.org/10.1016/j.neucom.2008.11.007

    Article  Google Scholar 

  22. 22.

    Mohammadi Z, Frounchi J, Amiri M (2017) Wavelet-based emotion recognition system using EEG signal. Neural Comput Appl 28(8):1985–1990. https://doi.org/10.1007/s00521-015-2149-8

    Article  Google Scholar 

  23. 23.

    Zhang Y, Ji X, Zhang S (2016) An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci Lett 633:152–157. https://doi.org/10.1016/j.neulet.2016.09.037

    Article  Google Scholar 

  24. 24.

    Munoz R, Olivares R, Taramasco C, Villarroel R, Soto R, Barcelos TS, Merino E, Alonso-Sánchez MF (2018) Using black hole algorithm to improve EEG-based emotion recognition. Comput Intell Neurosci 2018:1–21. https://doi.org/10.1155/2018/3050214

    Article  Google Scholar 

  25. 25.

    Kruchten P (1995) The 4 + 1 view model of architecture. IEEE Softw 12(6):42–50. https://doi.org/10.1109/52.469759

    Article  Google Scholar 

  26. 26.

    Munoz R, Villarroel R, Barcelos TS, Souza A, Merino E, Guiez R, Silva LA (2018) Development of a software that supports multimodal learning analytics: a case study on oral presentations. JUCS 24(2):149–170

    Google Scholar 

  27. 27.

    Gendreau M, Jean-Yves P (2010) Handbook of metaheuristics. Springer, Berlin. https://doi.org/10.1007/978-1-4419-1665-5

    Google Scholar 

  28. 28.

    Hamadi Y, Monfroy E, Saubion F (2010) What is autonomous search? Emotion 10(6):767–782. https://doi.org/10.1007/978-1-4419-1644-0_11

    Article  Google Scholar 

  29. 29.

    Hamadi Y, Monfroy E, Saubion F (2011) An introduction to autonomous search. In: Hamadi Y, Monfroy E, Saubion F (eds) Autonomous search. Springer, Berlin, Heidelberg, pp 1–11. https://doi.org/10.1007/978-3-642-21434-9_1

    Google Scholar 

  30. 30.

    Soto R, Crawford B, Palma W, Monfroy E, Olivares R, Castro C, Paredes F (2015) Top-k based adaptive enumeration in constraint programming. Math Probl Eng 2015:580785. https://doi.org/10.1155/2015/580785

    Article  Google Scholar 

  31. 31.

    Soto R, Crawford B, Olivares R, Galleguillos C, Castro C, Johnson F, Paredes F, Norero E (2016) Using autonomous search for solving constraint satisfaction problems via new modern approaches. Swarm Evolut Comput 30:64–77. https://doi.org/10.1016/j.swevo.2016.04.003

    Article  Google Scholar 

  32. 32.

    Soto R, Crawford B, Palma W, Galleguillos K, Castro C, Monfroy E, Johnson F, Paredes F (2015) Boosting autonomous search for CSPs via skylines. Inf Sci 308:38–48. https://doi.org/10.1016/j.ins.2015.01.035

    Article  Google Scholar 

  33. 33.

    Mizobe R, Martins L, Rodrigues D, Pontara K, Papa JP, Yang XS (2013) Binary bat algorithm for feature selection. Swarm Intell Bio-inspired Comput Theory Appl. https://doi.org/10.1016/B978-0-12-405163-8.00009-0

    Article  Google Scholar 

  34. 34.

    Sylvia A, Rajalaxmi R (2015) Unsupervised feature selection using binary bat algorithm. In: 2nd international conference on electronics and communication systems, pp 451–456. https://doi.org/10.1109/ECS.2015.7124945

  35. 35.

    Rodrigues D, Pereira LA, Nakamura RY, Costa KA, Yang XS, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Expert Syst Appl 41(5):2250–2258. https://doi.org/10.1016/j.eswa.2013.09.023

    Article  Google Scholar 

  36. 36.

    Goyal S, Patterh MS (2015) Modified bat algorithm for localization of wireless sensor network. Wirel Pers Commun 86(2):657–670. https://doi.org/10.1007/s11277-015-2950-9

    Article  Google Scholar 

  37. 37.

    López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58. https://doi.org/10.1016/j.orp.2016.09.002

    MathSciNet  Article  Google Scholar 

  38. 38.

    Jewajinda Y, Chongstitvatana P (2012) A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification. Neural Comput Appl 22(7–8):1609–1626. https://doi.org/10.1007/s00521-012-0963-9

    Article  Google Scholar 

  39. 39.

    Sun N, Lu Y (2018) A self-adaptive genetic algorithm with improved mutation mode based on measurement of population diversity. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3438-9

    Article  Google Scholar 

  40. 40.

    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Butterworth S (1930) On the theory of filter amplifiers. Wirel Eng 7(6):536–541

    Google Scholar 

  42. 42.

    Soleymani M, Lichtenauer J, Pun T, Pantic M (2012) A multimodal database for affect recognition and implicit tagging. IEEE Trans Affect Comput 3(1):42–55

    Article  Google Scholar 

  43. 43.

    Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11(2):112–114

    Article  Google Scholar 

  44. 44.

    Soto R, Crawford B, Carrasco C, Almonacid B, Reyes V, Araya I, Misra S, Olguín E (2016) Solving manufacturing cell design problems by using a dolphin echolocation algorithm. In: Computational science and its applications—ICCSA 2016. Springer, pp 77–86. https://doi.org/10.1007/978-3-319-42092-9_7

Download references


Carla Taramasco has been supported by CORFO—CENS 16CTTS-66390 through the National Center on Health Information Systems. This work is also supported by the National Commission for Scientific and Technological Research (CONICYT) through the Program STIC-AMSUD 17STIC- 03: “MONITORing for ehealth,” FONDEF ID16I10449 “Sistema inteligente para la gestión y análisis de la dotación de camas en la red asistencial del sector público”, and MEC80170097 “Red de colaboración científica entre universidades nacionales e internacionales para la estructuración del doctorado y magister en informática médica en la Universidad de Valparaíso.” Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455. María Francisca Alonso-Sńchez is supported by CONICYT/FONDECYT/INICIACION/11160212. Victor Hugo C. de Albuquerque appreciates the received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6).

Author information



Corresponding author

Correspondence to Rodrigo Olivares.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Data availability

The data generated to support the findings of this study have been deposited in the Figshare repository (https://figshare.com/s/1a80d472266b39ed2723).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Munoz, R., Olivares, R., Taramasco, C. et al. A new EEG software that supports emotion recognition by using an autonomous approach. Neural Comput & Applic 32, 11111–11127 (2020). https://doi.org/10.1007/s00521-018-3925-z

Download citation


  • Emotion recognition
  • Software architecture
  • Support vector machine
  • Autonomous bat algorithm