Skip to main content

A novel improved antlion optimizer algorithm and its comparative performance

Abstract

In this study, the improvement of the ant lion optimization which is inspired by ant lion’s hunting strategy is dealt with. The most disadvantageous property of this algorithm is its having a long run time due to the random walking process. In order to overcome this drawback, we proposed the improved random walking model, tournament selection method instead of the roulette wheel selection method, and reproduction mechanism at the boundary values. The performance of improved ant lion optimization algorithm based on the tournament selection (IALOT) is evaluated in comparison with the commonly known and used heuristic algorithms for ten benchmark functions. Furthermore, we have tested the performance of IALOT on the training of ANFIS known as a difficult optimization problem. The benchmark and ANFIS test results show that IALOT algorithm exhibits better performance than that of the ALO algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Abdel-Basset M, El-Shahat D, El-Henawy I, Sangaiah AK (2018) A modified flower pollination algorithm for the multidimensional knapsack problem: human-centric decision making. Soft Comput 22(13):4221–4239

    Article  Google Scholar 

  2. 2.

    Abdel-Basset M, El-Shahat D, El-henawy I, Sangaiah AK, Ahmed SH (2018) A novel whale optimization algorithm for cryptanalysis in Merkle–Hellman cryptosystem. Mob Netw Appl 23(4):723–733

    Article  Google Scholar 

  3. 3.

    Abdel-Basset M, El-Shahat D, Sangaiah AK (2017) A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-017-0731-3

    Article  Google Scholar 

  4. 4.

    Anand S, Afreen N, Yazdani S (2015) A novel and efficient selection method in genetic algorithm. Int J Comput Appl 129(15):7–12

    Google Scholar 

  5. 5.

    Babers R, Ghali NI, Hassanien AE, Madbouly NM (2015) Optimal community detection approach based on ant lion optimization. In: 2015 11th international computer engineering conference (ICENCO), pp 284–289

  6. 6.

    Babuška R (1997) Fuzzy systems, modeling and identification. Technical Report. http://www.dcsc.tudelft.nl/. Accessed 10 Nov 2017

  7. 7.

    Blickle T, Thiele L (1996) A comparison of selection schemes used in evolutionary algorithms. Evol Comput 4(4):361–394

    Article  Google Scholar 

  8. 8.

    Carrano EG, Takahashi RHC, Caminhas WM, Neto OM (2008) A genetic algorithm for multiobjective training of ANFIS fuzzy networks. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), pp 3259–3265

  9. 9.

    Cavuslu MA, Karakuzu C, Karakaya F (2012) Neural identification of dynamic systems on FPGA with improved PSO learning. Appl Soft Comput 12(9):2707–2718

    Article  Google Scholar 

  10. 10.

    Chopra N, Mehta S (2015) Multi-objective optimum generation scheduling using ant lion optimization. In: 2015 annual IEEE India conference (INDICON), pp 1–6

  11. 11.

    Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, p 1477

  12. 12.

    Gupta E, Saxena A (2016) Performance evaluation of antlion optimizer based regulator in automatic generation control of interconnected power system. J Eng 2016:14

    Google Scholar 

  13. 13.

    Hansen N, Ros R, Schoenauer MNM, Auger A (2011) Impacts of invariance in search: when CMA-ES and PSO face ill-conditioned and non-separable problems. Appl Soft Comput 11(8):5755–5769

    Article  Google Scholar 

  14. 14.

    Hiroyasu T, Miki M, Ono Y, Minami Y (2000) Ant colony for continuous functions, vol 20. The Science and Engineering, Doshisha University, Kyoto

    Google Scholar 

  15. 15.

    Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  16. 16.

    Jiang HM, Kwong CK, Ip WH, Wong TC (2012) Modeling customer satisfaction for new product development using a PSO-based ANFIS approach. Appl Soft Comput 12(2):726–734

    Article  Google Scholar 

  17. 17.

    Kamboj VK, Bhadoria A, Bath SK (2017) Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer. Neural Comput Appl 28(8):2181–2192

    Article  Google Scholar 

  18. 18.

    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  19. 19.

    Karaboga D, Akay B (2007) Artificial bee colony (abc) algorithm on training artificial neural networks, pp 1–4

  20. 20.

    Karaboga D, Kaya E (2013) Training ANFIS using artificial bee colony algorithm. In: IIS on IEEE (ed.) Innovations in intelligent systems and applications. IEEE, pp 1–5

  21. 21.

    Karakuzu C (2010) Parameter tuning of fuzzy sliding mode controller using particle swarm optimization. Int J Innov Comput Inform Control 6:4755–4770

    Google Scholar 

  22. 22.

    Karakuzu C (2017) On the performance of newsworthy meta-heuristic algorithms based on point of view fuzzy modelling. Turk J Electr Eng Comput Sci 25:4706–4721

    Article  Google Scholar 

  23. 23.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings IEEE international conference on neural networks, 1995, vol 4, pp 1942–1948

  24. 24.

    Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  Article  Google Scholar 

  25. 25.

    Luo W, Li Y (2016) Benchmarking heuristic search and optimisation algorithms in matlab. In: 22nd international conference on automation and computing (ICAC). IEEE, pp 250–255

  26. 26.

    Medhane DV, Sangaiah AK (2017) Search space-based multi-objective optimization evolutionary algorithm. Comput Electr Eng 58:126–143

    Article  Google Scholar 

  27. 27.

    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83(Supplement C):80–98

    Article  Google Scholar 

  28. 28.

    Nair SS, Rana KPS, Kumar V, Chawla A (2017) Efficient modeling of linear discrete filters using ant lion optimizer. Circuits Syst Signal Process 36(4):1535–1568

    Article  Google Scholar 

  29. 29.

    Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  30. 30.

    Nischal MM, Mehta S (2015) Optimal load dispatch using ant lion optimization. Int J Eng Res Appl 5(8):10–19

    Google Scholar 

  31. 31.

    Nobile MS, Pasi G, Cazzaniga P, Besozzi D, Colombo R, Mauri G (2015) Proactive particles in swarm optimization: a self-tuning algorithm based on fuzzy logic. In: IEEE international conference on fuzzy systems

  32. 32.

    Oussar Y, Rivals I, Dreyfus L (1998) Training wavelet networks for nonlinear dynamic input–output modeling. Neurocomputing 20:173–188

    Article  Google Scholar 

  33. 33.

    Petrovic M, Petronijevic J, Mitic M, Vukovic N, Plemic A, Miljkovic Z, Babic B (2015) The ant lion optimization algorithm for flexible process planning. JPE 18(2):65–68

    Google Scholar 

  34. 34.

    Raju M, Saikia LC, Sinha N (2016) Automatic generation control of a multi-area system using ant lion optimizer algorithm based pid plus second order derivative controller. Int J Electr Power Energy Syst 80:52–63

    Article  Google Scholar 

  35. 35.

    Razali NM, Geraghty J et al (2011) Genetic algorithm performance with different selection strategies in solving TSP. Proc World Congr Eng 2:1134–1139

    Google Scholar 

  36. 36.

    Rebecca N, Shin M, Mh S, Zuriani M (2015) Ant lion optimizer for optimal reactive power dispatch solution. J Electr Syst 3:67–74

    Google Scholar 

  37. 37.

    Rutenbar RA (1989) Simulated annealing algorithms: an overview. IEEE Circuits Devices Mag 5(1):19–26

    Article  Google Scholar 

  38. 38.

    Sastry PS, Santharam G, Unnikrishnan KP (1994) Memory neuron networks for identification and control of dynamical systems. IEEE Trans Neural Netw 5(2):306–319

    Article  Google Scholar 

  39. 39.

    Satheeshkumar R, Shivakumar R (2016) Ant lion optimization approach for load frequency control of multi-area interconnected power systems. Circuits Syst 7(9):2357

    Article  Google Scholar 

  40. 40.

    Shoorehdeli MA, Teshnehlab M, Sedigh AK (2009) Training anfis as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Sets Syst 160(7):922–948

    MathSciNet  Article  Google Scholar 

  41. 41.

    Shoorehdeli MA, Teshnehlab M, Sedigh AK, Khanesar MA (2009) Identification using anfis with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods. Appl Soft Comput 9(2):833–850

    Article  Google Scholar 

  42. 42.

    Srikanth K, Panwar LK, Panigrahi B, Herrera-Viedma E, Sangaiah AK, Wang GG (2018) Meta-heuristic framework: quantum inspired binary grey wolf optimizer for unit commitment problem. Comput Electr Eng 70:243–260

    Article  Google Scholar 

  43. 43.

    Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  Article  Google Scholar 

  44. 44.

    Storn R, Price K (1997) Differential evolution a simple evolution strategy for fast optimization. Dr. Dobb’s J 22(4):18–24 and 78

    MATH  Google Scholar 

  45. 45.

    Tirkolaee EB, Alinaghian M, Hosseinabadi AAR, Sasi MB, Sangaiah AK (2018) An improved ant colony optimization for the multi-trip Capacitated Arc Routing Problem. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2018.01.040

    Article  Google Scholar 

  46. 46.

    Trivedi IN, Parmar SA, Bhesdadiya RH, Jangir P (2016) Voltage stability enhancement and voltage deviation minimization using ant-lion optimizer algorithm. In: 2016 2nd international conference on advances in electrical, electronics, information, communication and bio-informatics (AEEICB), pp 263–267

  47. 47.

    Tung NS, Chakravorty S (2016) Ant lion optimizer based approach for optimal scheduling of thermal units for small scale electrical economic power dispatch problem. Int J Grid Distrib Comput 9(7):211–224

    Article  Google Scholar 

  48. 48.

    Yao P, Wang H (2017) Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle. Soft Comput 21(18):5475–5488

    Article  Google Scholar 

  49. 49.

    Zangeneh AZ, Mansouri M, Teshnehlab M, Sedigh AK (2011) Training ANFIS system with de algorithm. In Advanced computational intelligence (IWACI) fourth international workshop on IEEE, pp 308–314

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ugur Yuzgec.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kilic, H., Yuzgec, U. & Karakuzu, C. A novel improved antlion optimizer algorithm and its comparative performance. Neural Comput & Applic 32, 3803–3824 (2020). https://doi.org/10.1007/s00521-018-3871-9

Download citation

Keywords

  • Tournament selection
  • Heuristic optimization
  • Improved antlion
  • ANFIS