Rotation-invariant features based on directional coding for texture classification

  • Farida Ouslimani
  • Achour Ouslimani
  • Zohra Ameur
Original Article


A directional coding (DC) method is proposed to extract rotation-invariant features for texture classification. DC uses four orientations in \(3\times 3\) neighborhood pixel. For each orientation, the rank order of the central gray-level pixel is calculated. The four ranks are used to get 15 codes. The codes are combined with the information of the central pixel to extract 30 rotation-invariant features. For a multi-resolution study, DC is calculated by altering the window size around a central pixel. The number of samples is restricted to eight neighbors by local averaging. Therefore, in each single-scale DC histogram, the number of bins is kept small and constant. Outex, CUReT and KTH_TIPS2 databases are used to evaluate and compare the proposed method against some state-of-the-art local binary techniques and other texture analysis methods. The results obtained suggest that the proposed DC method outperforms other methods making it attractive for use in computer vision problems.


Texture classification Rotation invariance Texture features Directional rank 


Compliance with ethical standards

Conflict of interest

No conflict of interest.


  1. 1.
    Zhang J, Tan T (2002) Brief review of invariant texture analysis methods. Pattern Recogn 35:735–747CrossRefzbMATHGoogle Scholar
  2. 2.
    Haralik RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRefGoogle Scholar
  3. 3.
    Kashyap RL, Khotanzed A (1973) A model-based method for rotation invariant texture classification. IEEE Trans Pattern Anal Mach Intell 8(4):610–621Google Scholar
  4. 4.
    Cohen FS, Fan Z, Patel MA (1991) Classification of rotated and scaled textured image using Gaussian markov random field models. IEEE Trans Pattern Anal Mach Intell 13:192–202CrossRefGoogle Scholar
  5. 5.
    Chen JL, Kundu A (1994) Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. IEEE Trans Pattern Anal Mach Intell 16(2):208–214CrossRefGoogle Scholar
  6. 6.
    Deng H, Clausi DA (2004) Gaussian MRF rotation invariant features for image classification. IEEE Tran Image Process 26(7):951–955Google Scholar
  7. 7.
    Dharmagunawardhana C, Mahmoodi S, Bennett M, Niranjan M (2016) Rotation invariant texture descriptors based on Gaussian Markov random fields for classification. Pattern Recogn Lett 69:15–21CrossRefGoogle Scholar
  8. 8.
    Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81CrossRefGoogle Scholar
  9. 9.
    Ahmadvand A, Daliri MR (2016) Invariant texture classification using a spatial filter bank in multi-resolution analysis. Image Vis Comput 45:1–10CrossRefGoogle Scholar
  10. 10.
    Ahmadvand A, Reza Daliri M (2016) Rotation invariant classification using extended wavelet channel combining and LL channel filter bank. Knowl Based Syst 97:75–88CrossRefGoogle Scholar
  11. 11.
    Ojala T, Pietikainen M, Maenpaa M (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal 24(7):971–987CrossRefzbMATHGoogle Scholar
  12. 12.
    Hafiane A, Palaniappan K, Seetharaman G (2015) Median binary patterns for texture classification. Pattern Recogn 48:2609–2620CrossRefGoogle Scholar
  13. 13.
    Hegenbart S, Andreas Uhl (2015) A scale-and orientation-adaptive extension of Local Binary Patterns for texture classification. Pattern Recogn 48:2633–2644CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Wang RG, Wang WM, Gao W (2016) Local quantization code histogram for texture classification. Neurocomputing 207:354–364CrossRefGoogle Scholar
  15. 15.
    Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1117MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Heikkila M, Pietikainnen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. Proc Comput Vis Graph Image Process 4338:58–69Google Scholar
  17. 17.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 9(16):1657–1663MathSciNetzbMATHGoogle Scholar
  18. 18.
    Khellah FM (2011) Texture classification using dominant neighborhood structure. IEEE Trans Image Process 20(11):3270–3279MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu L, Long Y, Fieguth P, Lao S, Zhao G (2014) BRINT: binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76CrossRefGoogle Scholar
  21. 21.
    Ojala T, Maenpaa T, Pietikanen P, Viertola J, Kyllonen J, Huovinen S (2002) OutexNew framework for empirical evaluation of texture analysis algorithms. In: International conference on pattern recognition, 1, 701–706,
  22. 22.
    Dana K, Van-Ginneken B, Nayar S, Koenderink J (1999) Reflectance and texture of real world surfaces. ACM Trans Graph 181-34 .
  23. 23.
    Mallikarjuna P, Fritz M, Targhi AT, Hayman E, Caputo B, Eklundh J. The KTH-TIPS2 Databases.
  24. 24.
    Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31:2032–2047CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  • Farida Ouslimani
    • 1
  • Achour Ouslimani
    • 2
  • Zohra Ameur
    • 1
  1. 1.Laboratoire d’Analyse et de Modélisation des Phénomènes Aléatoires (LAMPA)Université Mouloud MammeriTizi OuzouAlgeria
  2. 2.Laboratoire Quartz,EA -7393 ENSEACergy-Pontoise CedexFrance

Personalised recommendations