Skip to main content
Log in

Adaptive sampling for UAV tracking

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicle (UAV)-based target tracking is a long-standing problem in UAV applications. In this paper, we develop a local kernel feature to encode properties of UAV tracking object. Meanwhile, object proposals can provide a reliable prior knowledge to identify tracking target being an object or not. Therefore, we propose to integrate detection proposal method into a tracking by detection framework. More specifically, we adopt edge box proposals and random samplings as training examples and then train these examples for tracking task. The structured support vector machine is employed to implement training and detecting procedure. To reveal the effectiveness of our method, experiment is performed on the UAV123 benchmark dataset. Among state-of-the-art methods, our method achieves comparable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Floreano D, Wood RJ (2015) Science, technology and the future of small autonomous drones. Nature 521(7553):460–466

    Article  Google Scholar 

  2. Zhang H, Cao X, Ho JKL, Chow TWS (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531

    Article  Google Scholar 

  3. Zhang H, Wang S, Xu X (2018) Tommy WS Chow, and QM Jonathan Wu, Tree2Vector: learning a vectorial representation for tree-structured data. In: IEEE transactions on neural networks and learning systems

  4. Henriques Joao F, Caseiro R, Martins P, Batista J (2015) High-speed tracking with Kernelized correlation filters. TPAMI. https://doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  5. Danelljan M, Hger G, Khan FS, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: BMVC

  6. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. TPAMI 25(5):564–577

    Article  Google Scholar 

  7. Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp 1822–1829

  8. Liu B, Huang J, Yang L, Kulikowsk C (2011) Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp 1313–1320

  9. Zhong W, Lu H, Yang M-H (2012) Robust object tracking via sparsity-based collaborative model. In: CVPR, pp 1838–1845

  10. Cheng M-M, Zhang Z, Lin W-Y, Torr P (2014) Bing: binarized normed gradients for objectness estimation at 300fps. In CVPR

  11. Zitnick CL, Dollar P (2014) Edge boxes: locating object proposals from edges. In: ECCV

  12. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. TPAMI 36(7):1442–1468

    Article  Google Scholar 

  13. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2411–2418

  14. Haijun Z, Ho JKL, Wu JQM, Ye Y (2013) Multi-dimensional latent semantic analysis using term spatial information. IEEE Trans Syst Man Cybern B 43(6):1625–1640

    Google Scholar 

  15. Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  16. Ma C, Huang J-B, Yang X, Yang M-H (2015) Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3074–3082

  17. Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang M-H (2016) Hedged deep tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4303–4311

  18. Danelljan M, Hager G, Khan FS, Felsberg M (2015) Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE international conference on computer vision workshops, pp 58–66

  19. Danelljan M, Robinson A, Khan FS, Felsberg M (2016) Beyond correlation filters: Learning continuous convolution operators for visual tracking. In European conference on computer vision. Springer, Cham, pp 472–488

    Chapter  Google Scholar 

  20. Ross D, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  21. Liang P, Pang Y, Liao C, Mei X, Ling H (2016) Adaptive objectness for object tracking. IEEE Signal Process Lett 23(7):949–953

    Article  Google Scholar 

  22. Huang D, Luo L, Wen M, Chen Z, Zhang C (2015) Enable scale and aspect ratio adaptability in visual tracking with detection proposals. In: Xie X, Jones MW, Tam GKL (eds) Proceedings of the British machine vision conference (BMVC). BMVA Press, pp 185.1–185.12

  23. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  24. Grabner H, Bischof H (2006) On-line boosting and vision. In: IEEE computer society conference on computer vision and pattern recognition, vol 1. IEEE, pp 260–267

  25. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: ECCV. Springer, pp 234–247

    Google Scholar 

  26. Hare S, Saffari A, Torr PHS (2011) Struck: structured output tracking with kernels. In: ICCV

  27. Zhang J, Ma S, Sclaroff S (2014) Meem: robust tracking via multiple experts using entropy minimization. In: ECCV. Springer, pp 188–203

  28. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: CVPR, pp 2544–2550

  29. Danelljan M, Khan FS, Felsberg M, van de Weijer J (2014) Adaptive color attributes for real-time visual tracking. In: CVPR, pp 1090–1097

  30. Ma C, Yang X, Zhang C, Yang M-H (2015) Long-term correlation tracking. In: CVPR, pp 5388–5396

  31. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: BMVA, pp 6.1–6.10

  32. Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Trans Pattern Anal Mach Intell 34(11):2189–2202

    Article  Google Scholar 

  33. Chang K, Liu T, Chen H, Lai S (2011) Fusing generic objectness and visual saliency for salient object detection. In: ICCV

  34. Mihir J, Van Gemert J, Jégou H, Bouthemy P, Snoek C (2014) Action localization with tubelets from motion. In: CVPR

  35. Tao R, Gavves E, Snoek CG, Smeulders AW (2014) Locality in generic instance search from one example. In: CVPR

  36. Juneja M, Vedaldi A, Jawahar C, Zisserman A (2013) Blocks that shout: distinctive parts for scene classification. In: CVPR

  37. Uijlings JR, van de Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171

    Article  Google Scholar 

  38. Zhang Z, Warrell J, Torr PH (2011) Proposal generation for object detection using cascaded ranking SVMS. In: CVPR

  39. Endres I, Hoiem D (2014) Category-independent object proposals with diverse ranking. IEEE Trans Pattern Anal Mach Intell 36(2):222–234

    Article  Google Scholar 

  40. Gao Z, Porikli F, Li H (2016) Beyond local search: tracking objects everywhere with instance-specific proposals. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 943–951

  41. Wu Y, Lim J, Yang M-H (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  42. Matej K, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojir T, Hager G, Nebehay G, Pflugfelder R (2015) The visual object tracking vot2015 challenge results. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1–23

  43. Shuran S, Xiao J (2013) Tracking revisited using RGBD camera: Unified benchmark and baselines. In: Proceedings of the IEEE international conference on computer vision, pp 233–240

  44. Li A, Lin M, Yi W, Yang M-H, Yan S (2016) Nus-pro: a new visual tracking challenge. IEEE Trans Pattern Anal Mach Intell 38(2):335–349

    Article  Google Scholar 

  45. Collins R, Zhou X, Teh SK (2005) An open source tracking testbed and evaluation web site. In: IEEE int’l workshop on performance evaluation of tracking and surveillance, pp 17–24

  46. Matthias M, Smith N, Ghanem B (2016) A benchmark and simulator for UAV tracking. In: European conference on computer vision. Springer, pp 445–461

  47. Elsey M, Esedoglu S (2009) Analogue of the total variation denoising model in the context of geometry processing. SIAM Multiscale Model Simul 7(4):1549–1573

    Article  MathSciNet  Google Scholar 

  48. Lee S-H, Seo JK (2005) Noise removal with Gauss curvature-driven diffusion. IEEE Trans Image Process 14(7):904–909

    Article  MathSciNet  Google Scholar 

  49. Seo H, Milanfar P (2010) Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans Pattern Anal Mach Intell 32(9):1688–1704

    Article  Google Scholar 

  50. Seo HJ, Milanfar P (2011) Face verification using the lark representation. IEEE Trans Inf Forensic Secur 6(4):1275–1286

    Article  Google Scholar 

  51. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 16(2):349–366

    Article  MathSciNet  Google Scholar 

  52. Gao Z, Porikli F, Li H (2016) Not all negatives are equal: learning to track with multiple background clusters. IEEE Trans Circuits Syst Video Technol 28:314–326

    Google Scholar 

  53. Bordes A, Bottou L, Gallinari P, Weston J (2007) Solving multiclass support vector machines with larank. In: ICML

  54. Henriques J, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV, pp 702–715

  55. Hong Z, Chen Z, Wang C, Mei X, Prokhorov D, Tao D (2015) Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: IEEE conference on CVPR, pp 749–758

  56. Martin D, Hager G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 4310–4318

  57. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. In: 2014 workshops computer vision-ECCV, pp 254–265

    Google Scholar 

  58. Bolme DS, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: CVPR, pp 2544–550

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Luo.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is jointly supported by the National Natural Science Foundation of China No. 61374161, China Aviation Science Foundation 20142057006, Chinese special research program of a large civil aircraft under the Grant MJZ-2016-S-04.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, X., Ding, L. et al. Adaptive sampling for UAV tracking. Neural Comput & Applic 31, 5029–5043 (2019). https://doi.org/10.1007/s00521-018-03996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-03996-8

Keywords

Navigation