Skip to main content
Log in

Movie recommender system with metaheuristic artificial bee

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recommender systems are information retrieval tool that allocates accurate recommendations to the specific users. Collaborative movie recommender systems support users in accessing their popular movies by suggesting similar users or movies from their past common ratings. In this research work, a hybrid recommender system has been proposed which utilized k-means clustering algorithm with bio-inspired artificial bee colony (ABC) optimization technique and applied to the Movielens dataset. Our proposed system has been described systematic manner, and the subsequent results have been demonstrated. The proposed system (ABC-KM) is also compared with existing approaches, and the consequences have been examined. Estimation procedures such as precision, mean absolute error, recall, and accuracy for the movie recommender system delivered improved results for ABC-KM collaborative movie recommender system. The experiment outcomes on Movielens dataset established that the projected system provides immense achievement regarding scalability, performance and delivers accurate personalized movie recommendations by reducing cold start problem. As far as our best research knowledge, our proposed recommender system is novel and delivers effective fallouts when compared with already existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu J, Wu D, Mao M, Wang W, Zhang G, Nu S (2015) Recommender system application developments. Decis Support Syst 74:12–32. https://doi.org/10.1016/j.dss.2015.03.008

    Article  Google Scholar 

  2. Beel J, Gipp B, Langer S, Breitinger C (2015) Research-paper recommender systems: a literature survey. Int J Digit Libr. https://doi.org/10.1007/s00799-015-0156-0

    Google Scholar 

  3. Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl-Based Syst 46:109–132. https://doi.org/10.1016/j.knosys.2013.03.012

    Article  Google Scholar 

  4. Katarya R, Verma OP (2016) Recent developments in affective recommender systems. Phys A Stat Mech Appl 461:182–190. https://doi.org/10.1016/j.physa.2016.05.046

    Article  Google Scholar 

  5. Katarya R, Verma OP (2017) Efficient music recommender system using context graph and particle swarm. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4447-x

    Google Scholar 

  6. Colombo-Mendoza LO, Valencia-García R, Rodríguez-González A, Alor-Hernández G, Samper-Zapater JJ (2014) RecomMetz: a context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst Appl 42:1202–1222. https://doi.org/10.1016/j.eswa.2014.09.016

    Article  Google Scholar 

  7. Wang Z, Yu X, Feng N, Wang Z (2014) An improved collaborative movie recommendation system using computational intelligence. J Vis Lang Comput 25:667–675. https://doi.org/10.1016/j.jvlc.2014.09.011

    Article  Google Scholar 

  8. Katarya R, Verma OP (2016) A collaborative recommender system enhanced with particle swarm optimization technique. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-3481-4

    Google Scholar 

  9. Liu H, Kong X, Bai X, Wang WEI (2015) Context-based collaborative filtering for citation recommendation. IEEE Access 3:1695–1703

    Article  Google Scholar 

  10. Li Y, Zhai CX, Chen Y (2014) Exploiting rich user information for one-class collaborative filtering. Knowl Inf Syst 38:277–301. https://doi.org/10.1007/s10115-012-0583-9

    Article  Google Scholar 

  11. Aguilar J, Valdiviezo-Díaz P, Riofrio G (2017) A general framework for intelligent recommender systems. Appl Comput Inform. https://doi.org/10.1016/j.aci.2016.08.002

    Google Scholar 

  12. Katarya R, Verma OP (2017) Effectual recommendations using artificial algae algorithm and fuzzy c-mean. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2017.04.004

    Google Scholar 

  13. Kunaver M, Požrl T (2017) Diversity in recommender systems—a survey. Knowl-Based Syst 123:154–162. https://doi.org/10.1016/j.knosys.2017.02.009

    Article  Google Scholar 

  14. Rubio JE, Alcaraz C, Lopez J (2017) Recommender system for privacy-preserving solutions in smart metering. Pervasive Mob Comput. https://doi.org/10.1016/j.pmcj.2017.03.008

    Google Scholar 

  15. Katarya R, Verma OP (2016) A collaborative recommender system enhanced with particle swarm optimization technique. Multimed Tools Appl 75:1–15. https://doi.org/10.1007/s11042-016-3481-4

    Article  Google Scholar 

  16. Bao J, Zheng Y, Wilkie D, Mokbel M (2015) Recommendations in location-based social networks: a survey. Geoinformatica. https://doi.org/10.1007/s10707-014-0220-8

    Google Scholar 

  17. Abbas A, Zhang L, Khan SU (2015) A survey on context-aware recommender systems based on computational intelligence techniques. Computing. https://doi.org/10.1007/s00607-015-0448-7

    MathSciNet  Google Scholar 

  18. Katarya R, Verma OP (2016) Recommender system with grey wolf optimizer and FCM. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2817-3

    Google Scholar 

  19. Katarya R, Verma OP (2016) An effective web page recommender system with fuzzy c-mean clustering. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-4078-7

    Google Scholar 

  20. Liu D, Liang D, Wang C (2015) A novel three-way decision model based on incomplete information system. Knowl-Based Syst 91:32–45. https://doi.org/10.1016/j.knosys.2015.07.036

    Article  Google Scholar 

  21. Mao K, Chen G, Hu Y, Zhang L (2016) Music recommendation using graph based quality model. Sig Process 120:1–8. https://doi.org/10.1016/j.sigpro.2015.03.026

    Article  Google Scholar 

  22. Qiao Z, Zhang P, Cao Y, Zhou C, Guo L (2014) Improving collaborative recommendation via location-based user-item subgroup. Procedia Comput Sci 29:400–409. https://doi.org/10.1016/j.procs.2014.05.036

    Article  Google Scholar 

  23. Mukherjee R, Sajja N, Sen S (2003) A movie recommendation system—an application of voting theory in user modeling. User Model User-Adapt Interact 13:5–33. https://doi.org/10.1023/A:1024022819690

    Article  Google Scholar 

  24. Karaboga D, Ozturk C, Basturk B, Kıran MS, Fındık O, Karaboga D et al (2009) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Appl Soft Comput 11:454–462. https://doi.org/10.1016/j.asoc.2007.05.007

    Google Scholar 

  25. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial Bee Colony (ABC) algorithm. Appl Soft Comput 11:652–657. https://doi.org/10.1016/j.asoc.2009.12.025

    Article  Google Scholar 

  26. Rajasekhar A, Lynn N, Das S, Suganthan PN (2017) Computing with the collective intelligence of honey bees—a survey. Swarm Evol Comput 32:25–48. https://doi.org/10.1016/j.swevo.2016.06.001

    Article  Google Scholar 

  27. Zhou A, Qu B, Li H, Zhao S, Nagaratnam P (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1:32–49. https://doi.org/10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  28. Mavrovouniotis M, Li C, Yang S (2017) A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput 33:1–17. https://doi.org/10.1016/j.swevo.2016.12.005

    Article  Google Scholar 

  29. Gotmare A, Bhattacharjee SS, Patidar R, George NV (2017) Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol Comput 32:68–84. https://doi.org/10.1016/j.swevo.2016.06.007

    Article  Google Scholar 

  30. Cosma G, Brown D, Archer M, Khan M, Pockley AG (2017) A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Syst Appl 70:1–19. https://doi.org/10.1016/j.eswa.2016.11.006

    Article  Google Scholar 

  31. Bandaru S, Ng AHC, Deb K (2017) Data mining methods for knowledge discovery in multi-objective optimization: part B—new developments and applications. Expert Syst Appl 70:119–138. https://doi.org/10.1016/j.eswa.2016.10.016

    Article  Google Scholar 

  32. Rakshit P, Konar A, Das S (2017) Noisy evolutionary optimization algorithms—a comprehensive survey. Swarm Evol Comput 33:18–45. https://doi.org/10.1016/j.swevo.2016.09.002

    Article  Google Scholar 

  33. Ander AR, Leser ULF, Graefe G (2017) Optimization of complex dataflows with user-defined functions. ACM Comput Surv 50:38

    Google Scholar 

  34. Deng S, Huang L, Xu G (2014) Social network-based service recommendation with trust enhancement. Expert Syst Appl 41:8075–8084. https://doi.org/10.1016/j.eswa.2014.07.012

    Article  Google Scholar 

  35. Park DH, Kim HK, Choi IY, Kim JK (2012) A literature review and classification of recommender systems research. Expert Syst Appl 39:10059–10072

    Article  Google Scholar 

  36. Bauer J, Nanopoulos A (2014) Recommender systems based on quantitative implicit customer feedback. Decis Support Syst. https://doi.org/10.1016/j.dss.2014.09.005

    Google Scholar 

  37. Ekstrand MD (2010) Collaborative filtering recommender systems. Found Trends® Hum Comput Interact 4:81–173. https://doi.org/10.1561/1100000009

    Article  Google Scholar 

  38. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Adapt Web 69:253–260. https://doi.org/10.1007/978-3-540-72079-9_9

    Google Scholar 

  39. Sánchez-Moreno D, Gil González AB, Muñoz Vicente MD, López Batista VF, Moreno García MN (2016) A collaborative filtering method for music recommendation using playing coefficients for artists and users. Expert Syst Appl 66:234–244. https://doi.org/10.1016/j.eswa.2016.09.019

    Article  Google Scholar 

  40. Wu H, Pei Y, Li B, Kang Z, Liu X, Li H (2015) Item recommendation in collaborative tagging systems via heuristic data fusion. Knowl-Based Syst 75:124–140. https://doi.org/10.1016/j.knosys.2014.11.026

    Article  Google Scholar 

  41. Polatidis N, Georgiadis CK (2015) A multi-level collaborative filtering method that improves recommendations. Expert Syst Appl 48:100–110. https://doi.org/10.1016/j.eswa.2015.11.023

    Article  Google Scholar 

  42. Liang X, Xia Z, Pang L, Zhang L, Zhang H (2016) Measure prediction capability of data for collaborative filtering. Knowl Inf Syst. https://doi.org/10.1007/s10115-016-0920-5

    Google Scholar 

  43. Ghazarian S, Nematbakhsh MA (2015) Enhancing memory-based collaborative filtering for group recommender systems. Expert Syst Appl 42:3801–3812. https://doi.org/10.1016/j.eswa.2014.11.042

    Article  Google Scholar 

  44. Soares M, Viana P (2014) Tuning metadata for better movie content-based recommendation systems. Multimed Tools Appl. https://doi.org/10.1007/s11042-014-1950-1

    Google Scholar 

  45. Chen M-H, Teng C-H, Chang P-C (2015) Applying artificial immune systems to collaborative filtering for movie recommendation. Adv Eng Inform 29:830–839. https://doi.org/10.1016/j.aei.2015.04.005

    Article  Google Scholar 

  46. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R (2002) Wu a. Y. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  Google Scholar 

  47. Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63:503–527. https://doi.org/10.1016/j.datak.2007.03.016

    Article  Google Scholar 

  48. Salah A, Rogovschi N, Nadif M (2015) A dynamic collaborative filtering system via a weighted clustering approach. Neurocomputing 175:206–215. https://doi.org/10.1016/j.neucom.2015.10.050

    Article  Google Scholar 

  49. Cheng L, Wang H (2014) A fuzzy recommender system based on the integration of subjective preferences and objective information. Appl Soft Comput J 18:290–301. https://doi.org/10.1016/j.asoc.2013.09.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Katarya.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katarya, R. Movie recommender system with metaheuristic artificial bee. Neural Comput & Applic 30, 1983–1990 (2018). https://doi.org/10.1007/s00521-017-3338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3338-4

Keywords

Navigation