Advertisement

Accurate photovoltaic power forecasting models using deep LSTM-RNN

Original Article

Abstract

Photovoltaic (PV) is one of the most promising renewable energy sources. To ensure secure operation and economic integration of PV in smart grids, accurate forecasting of PV power is an important issue. In this paper, we propose the use of long short-term memory recurrent neural network (LSTM-RNN) to accurately forecast the output power of PV systems. The LSTM networks can model the temporal changes in PV output power because of their recurrent architecture and memory units. The proposed method is evaluated using hourly datasets of different sites for a year. We compare the proposed method with three PV forecasting methods. The use of LSTM offers a further reduction in the forecasting error compared with the other methods. The proposed forecasting method can be a helpful tool for planning and controlling smart grids.

Keywords

Smart grids Renewable energy sources PV power forecasting Deep learning 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de Pison F, Antonanzas-Torres F (2016) Review of photovoltaic power forecasting. Sol Energy 136:78–111CrossRefGoogle Scholar
  2. 2.
    Bacher P, Madsen H, Nielsen HA (2009) Online short-term solar power forecasting. Sol Energy 83(10):1772–1783CrossRefGoogle Scholar
  3. 3.
    Barakat S, Samy M, Eteiba MB, Wahba WI (2016) Feasibility study of grid connected PV-biomass integrated energy system in Egypt. Int J Emerg Electr Power Syst 17(5):519–528Google Scholar
  4. 4.
    Benmouiza K, Cheknane A (2016) Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models. Theoret Appl Climatol 124(3–4):945–958CrossRefGoogle Scholar
  5. 5.
    Bessa R, Trindade A, Silva CS, Miranda V (2015) Probabilistic solar power forecasting in smart grids using distributed information. Int J Electr Power Energy Syst 72:16–23CrossRefGoogle Scholar
  6. 6.
    Bouzerdoum M, Mellit A, Pavan AM (2013) A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol Energy 98:226–235CrossRefGoogle Scholar
  7. 7.
    Campbell SD, Diebold FX (2005) Weather forecasting for weather derivatives. J Am Stat Assoc 100(469):6–16MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cao JC, Cao S (2006) Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy 31(15):3435–3445CrossRefGoogle Scholar
  9. 9.
    Capizzi G, Napoli C, Bonanno F (2012) Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting. IEEE Trans Neural Netw Learn Syst 23(11):1805–1815CrossRefGoogle Scholar
  10. 10.
    Chow CW, Urquhart B, Lave M, Dominguez A, Kleissl J, Shields J, Washom B (2011) Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Sol Energy 85(11):2881–2893CrossRefGoogle Scholar
  11. 11.
    Coimbra CF, Pedro HT (2013) Chapter 15—stochastic-learning methods. In: Kleissl J (ed) Solar energy forecasting and resource assessment. Academic Press, Boston, pp 383–406. doi: 10.1016/B978-0-12-397177-7.00015-2 CrossRefGoogle Scholar
  12. 12.
    Connolly D, Lund H, Mathiesen BV, Leahy M (2011) The first step towards a 100% renewable energy-system for ireland. Appl Energy 88(2):502–507CrossRefGoogle Scholar
  13. 13.
    Ding M, Xu Z, Wang W, Wang X, Song Y, Chen D (2016) A review on China’s large-scale PV integration: progress, challenges and recommendations. Renew Sustain Energy Rev 53:639–652CrossRefGoogle Scholar
  14. 14.
    Dong Z, Yang D, Reindl T, Walsh WM (2014) Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics. Energy Convers Manag 79:66–73CrossRefGoogle Scholar
  15. 15.
    Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764CrossRefGoogle Scholar
  16. 16.
    Fantidis J, Bandekas D, Potolias C, Vordos N (2013) Cost of PV electricity-case study of greece. Sol Energy 91:120–130CrossRefGoogle Scholar
  17. 17.
    Fu X, Li S (2016) Control of single-phase grid-connected converters with LCL filters using recurrent neural network and conventional control methods. IEEE Trans Power Electron 31(7):5354–5364Google Scholar
  18. 18.
    Geraldi E, Romano F, Ricciardelli E (2012) An advanced model for the estimation of the surface solar irradiance under all atmospheric conditions using MSG/SEVIRI data. IEEE Trans Geosci Remote Sens 50(8):2934–2953CrossRefGoogle Scholar
  19. 19.
    Ghafoor A, Munir A (2015) Design and economics analysis of an off-grid PV system for household electrification. Renew Sustain Energy Rev 42:496–502CrossRefGoogle Scholar
  20. 20.
    Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 6645–6649Google Scholar
  21. 21.
    Hammer A, Heinemann D, Lorenz E, Lückehe B (1999) Short-term forecasting of solar radiation: a statistical approach using satellite data. Sol Energy 67(1):139–150CrossRefGoogle Scholar
  22. 22.
    Hassanzadeh M, Etezadi-Amoli M, Fadali M (2010) Practical approach for sub-hourly and hourly prediction of PV power output. In: North American power symposium (NAPS), 2010. IEEE, pp 1–5Google Scholar
  23. 23.
    Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRefGoogle Scholar
  24. 24.
    Izgi E, Öztopal A, Yerli B, Kaymak MK, Şahin AD (2012) Short-mid-term solar power prediction by using artificial neural networks. Sol Energy 86(2):725–733CrossRefGoogle Scholar
  25. 25.
    Ji W, Chee KC (2011) Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Sol Energy 85(5):808–817CrossRefGoogle Scholar
  26. 26.
    Jin L, Li S (2016) Distributed task allocation of multiple robots: a control perspective. IEEE Trans Syst Man Cybern Syst PP(99):1–9Google Scholar
  27. 27.
    Jin L, Li S, La HM, Luo X (2017) Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans Ind Electron 64(6):4710–4720Google Scholar
  28. 28.
    Li S, He J, Li Y, Rafique MU (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li S, Qin F (2013) A dynamic neural network approach for solving nonlinear inequalities defined on a graph and its application to distributed, routing-free, range-free localization of WSNs. Neurocomputing 117:72–80CrossRefGoogle Scholar
  30. 30.
    Li S, Wang H, Rafique MU (2017) A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans Neural Netw Learn Syst PP(99):1–11Google Scholar
  31. 31.
    Li S, Zhang Y, Jin L (2016) Kinematic control of redundant manipulators using neural networks. IEEE Trans Neural Netw Learn Syst 28(10):2243–2254Google Scholar
  32. 32.
    Li Y, Su Y, Shu L (2014) An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renew Energy 66:78–89CrossRefGoogle Scholar
  33. 33.
    Lim YS, Tang JH (2014) Experimental study on flicker emissions by photovoltaic systems on highly cloudy region: a case study in Malaysia. Renew Energy 64:61–70CrossRefGoogle Scholar
  34. 34.
    Lipperheide M, Bosch J, Kleissl J (2015) Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant. Sol Energy 112:232–238CrossRefGoogle Scholar
  35. 35.
    Liu J, Fang W, Zhang X, Yang C (2015) An improved photovoltaic power forecasting model with the assistance of aerosol index data. IEEE Trans Sustain Energy 6(2):434–442CrossRefGoogle Scholar
  36. 36.
    Lorenz E, Hurka J, Heinemann D, Beyer HG (2009) Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE J Sel Top Appl Earth Obs Remote Sens 2(1):2–10CrossRefGoogle Scholar
  37. 37.
    Mahmoud K, Yorino N, Ahmed A (2016) Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Trans Power Syst 31(2):960–969CrossRefGoogle Scholar
  38. 38.
    Mahmud N, Zahedi A (2016) Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew Sustain Energy Rev 64:582–595CrossRefGoogle Scholar
  39. 39.
    Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, Nielsen S, Ridjan I, Karnøe P, Sperling K et al (2015) Smart energy systems for coherent 100% renewable energy and transport solutions. Appl Energy 145:139–154CrossRefGoogle Scholar
  40. 40.
    Mathiesen P, Kleissl J (2011) Evaluation of numerical weather prediction for intra-day solar forecasting in the continental united states. Sol Energy 85(5):967–977CrossRefGoogle Scholar
  41. 41.
    Mellit A, Pavan AM, Lughi V (2014) Short-term forecasting of power production in a large-scale photovoltaic plant. Sol Energy 105:401–413CrossRefGoogle Scholar
  42. 42.
    Mubiru J (2008) Predicting total solar irradiation values using artificial neural networks. Renew Energy 33(10):2329–2332CrossRefGoogle Scholar
  43. 43.
    Naz S, Umar AI, Ahmed R, Razzak MI, Rashid SF, Shafait F (2016) Urdu nastaliq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks. SpringerPlus 5(1):2010CrossRefGoogle Scholar
  44. 44.
    Nematollahi O, Hoghooghi H, Rasti M, Sedaghat A (2016) Energy demands and renewable energy resources in the middle east. Renew Sustain Energy Rev 54:1172–1181CrossRefGoogle Scholar
  45. 45.
    Pedro HT, Coimbra CF (2012) Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol Energy 86(7):2017–2028CrossRefGoogle Scholar
  46. 46.
    Perez R, Kivalov S, Schlemmer J, Hemker K, Renné D, Hoff TE (2010) Validation of short and medium term operational solar radiation forecasts in the US. Sol Energy 84(12):2161–2172CrossRefGoogle Scholar
  47. 47.
    Perez R, Lorenz E, Pelland S, Beauharnois M, Van Knowe G, Hemker K, Heinemann D, Remund J, Müller SC, Traunmüller W et al (2013) Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol Energy 94:305–326CrossRefGoogle Scholar
  48. 48.
    Santos SF, Fitiwi DZ, Shafie-Khah M, Bizuayehu AW, Cabrita CM, Catalão JP (2017) New multistage and stochastic mathematical model for maximizing res hosting capacity—part I: problem formulation. IEEE Trans Sustain Energy 8(1):304–319CrossRefGoogle Scholar
  49. 49.
    Shivashankar S, Mekhilef S, Mokhlis H, Karimi M (2016) Mitigating methods of power fluctuation of photovoltaic (PV) sources—a review. Renew Sustain Energy Rev 59:1170–1184CrossRefGoogle Scholar
  50. 50.
    Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger, KQ (eds) Advances in neural information processing systems. Curran Associates, Inc, Palais des Congrès de Montréal, Montréal CANADA, pp 3104–3112Google Scholar
  51. 51.
    Wan C, Zhao J, Song Y, Xu Z, Lin J, Hu Z (2015) Photovoltaic and solar power forecasting for smart grid energy management. CSEE J Power Energy Syst 1(4):38–46CrossRefGoogle Scholar
  52. 52.
    Woyte A, Van Thong V, Belmans R, Nijs J (2006) Voltage fluctuations on distribution level introduced by photovoltaic systems. IEEE Trans Energy Convers 21(1):202–209CrossRefGoogle Scholar
  53. 53.
    Yacef R, Benghanem M, Mellit A (2012) Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renew Energy 48:146–154CrossRefGoogle Scholar
  54. 54.
    Yao Y, He X, Huang T, Li C, Xia D (2016) A projection neural network for optimal demand response in smart grid environment. Neural Comput Appl 1–9. doi: 10.1007/s00521-016-2532-0
  55. 55.
    Yona A, Senjyu T, Funabashi T, Kim CH (2013) Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. IEEE Trans Sustain Energy 4(2):527–533CrossRefGoogle Scholar
  56. 56.
    Zhi L, Zhu Y, Wang H, Xu Z, Man Z (2016) A recurrent neural network for modeling crack growth of aluminium alloy. Neural Comput Appl 27(1):197–203CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringAswan UniversityAswanEgypt

Personalised recommendations