Neural Computing and Applications

, Volume 31, Supplement 2, pp 1291–1298 | Cite as

Modeling of magnetic cooling power of manganite-based materials using computational intelligence approach

  • Taoreed O. Owolabi
  • Luqman E. OlooreEmail author
  • Kabiru O. Akande
  • Sunday O. Olatunji
Original Article


Magnetic refrigeration (MR) technology has been identified as a potential replacement for the gas compression system of refrigeration due to its environmental friendliness and high level of efficiency. This technology utilizes manganite-based materials as magnetic refrigerants due to the dependence of magnetic properties as well as relative cooling power (RCP) of this class of materials on the concentration and nature of the dopants. Quantifying the effect of dopants on RCP of manganite-based materials requires a long experimental procedures and techniques that are costly and time-consuming. In order to circumvent these challenges, we propose a model, based on support vector regression (SVR), which quickly estimates the RCP of doped manganite-based materials with high level of accuracy using crystal lattice constants as descriptors. The accuracy and ease with which the proposed SVR-based model estimates RCP of doped manganite-based materials is very promising and effective in designing MR system of desired RCP.


Relative cooling power Support vector regression Manganite-based materials Lattice constants Magnetic refrigeration 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest as this manuscript represents original research work.


  1. 1.
    Fujieda S, Fujita A, Fukamichi K (2003) Large magnetocaloric effects in NaZn13-type La(FexSi1−x)13 compounds and their hydrides composed of icosahedral clusters. Sci Technol Adv Mater 4:339–346Google Scholar
  2. 2.
    Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308(2):325–340Google Scholar
  3. 3.
    Brück E (2005) Developments in magnetocaloric refrigeration. J Phys D Appl Phys 38(23):R381–R391Google Scholar
  4. 4.
    Gschneidner KA Jr., Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68(6):1479–1539Google Scholar
  5. 5.
    Debye P (1926) Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann Phys 386(25):1154–1160zbMATHGoogle Scholar
  6. 6.
    Giauque WF (1927) A thermodynamic treatment of certain magnetic effects. a proposed method of producing temperatures considerably below 1° absolute. J Am Chem Soc 49:1864–1870Google Scholar
  7. 7.
    Prenger FC, Hill DD, Trueblood J, Servais T, Laatsch J, Barclay JA (1990) Performance tests of a conductive magnetic refrigerator using a 4.5 K heat sink. Adv Cryog Eng 35:1105–1113Google Scholar
  8. 8.
    Xie ZG, Geng DY, Zhang ZD (2010) Reversible room-temperature magnetocaloric effect in Mn5PB2. Appl Phys Lett 97(20):202504Google Scholar
  9. 9.
    Zhong W, Au C-T, Du Y-W (2013) Review of magnetocaloric effect in perovskite-type oxides. Chin Phys B 22(5):57501Google Scholar
  10. 10.
    Brown GV (1976) Magnetic heat pumping near room temperature. J Appl Phys 47(8):3673–3680Google Scholar
  11. 11.
    Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78(23):4494–4497Google Scholar
  12. 12.
    Phan M-H, Yu S-C, Hur NH (2005) Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3 (0.05 ≤ x ≤ 0.25) single crystals. Appl Phys Lett 86:72504Google Scholar
  13. 13.
    Wada H, Tanabe Y (2001) Giant magnetocaloric effect of MnAs1−xSbx. Appl Phys Lett 79(20):3302Google Scholar
  14. 14.
    Hu FX, Shen BG, Sun JR (2002) Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1. Appl Phys Lett 80(5):826Google Scholar
  15. 15.
    Khan A, Shamsi MH, Choi TS (2009) Correlating dynamical mechanical properties with temperature and clay composition of polymer-clay nanocomposites. Comput Mater Sci 45(2):257–265Google Scholar
  16. 16.
    Majid A, Khan A, Javed G, Mirza AM (2010) Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression. Comput Mater Sci 50:363–372Google Scholar
  17. 17.
    Owolabi TO, Akande KO, Sunday OO (2015) Modeling of average surface energy estimator using computational intelligence technique. Multidiscip Model Mater Struct 11(2):284–296Google Scholar
  18. 18.
    Owolabi TO, Akande KO, Olatunji SO (2015) Estimation of surface energies of hexagonal close packed metals using computational intelligence technique. Appl Soft Comput 31:360–368Google Scholar
  19. 19.
    Owolabi TO, Gondal MA (2015) Estimation of surface tension of methyl esters biodiesels using computational intelligence technique. Appl Soft Comput J 37:227–233Google Scholar
  20. 20.
    Owolabi TO, Akande KO, Olatunji SO (2015) Development and validation of surface energies estimator (SEE) using computational intelligence technique. Comput Mater Sci 101:143–151Google Scholar
  21. 21.
    Akande KO, Owolabi TO, Olatunji SO (2015) Investigating the effect of correlation-based feature selection on the performance of neural network in reservoir characterization. J Nat Gas Sci Eng 27:98–108Google Scholar
  22. 22.
    Owolabi TO, Akande KO, Olatunji SO (2014) Estimation of superconducting transition temperature TC for superconductors of the doped MgB2 system from the crystal lattice parameters using support vector regression. J Supercond Nov Magn 28(1):75–81Google Scholar
  23. 23.
    Akande KO, Owolabi TO, Olatunji SO (2015) Investigating the effect of correlation-based feature selection on the performance of support vector machines in reservoir characterization. J Nat Gas Sci Eng 22:515–522Google Scholar
  24. 24.
    Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73Google Scholar
  25. 25.
    Iridia TR, Dorigo M, De Bruxelles UL, Roosevelt AF, Gambardella LM (1996) Ant colony system: a cooperative learning approach to the traveling salesman problem. System 1(1):1–26Google Scholar
  26. 26.
    Meng Z, Pan JS, Xu H (2016) QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: a cooperative swarm based algorithm for global optimization. Knowl Based Syst 109:104–121Google Scholar
  27. 27.
    Chu S-C, Tsai P-W, Pan J-S (2006) Cat swarm optimization. In: Proceedings of the 9th Pacific Rim international conference on artificial intelligence, LNAI 4099, pp 854–858. Accessed 19 Mar 2017
  28. 28.
    Cai CZ, Xiao TT, Tang JL, Huang SJ (2013) Analysis of process parameters in the laser deposition of YBa2Cu3O7 superconducting films by using SVR. Phys C Supercond 493:100–103Google Scholar
  29. 29.
    Mansfield MM, Needs RJ (1991) Surface energy and stress of lead (111)and (110) surfaces. Phys Rev B 43:8829–8833Google Scholar
  30. 30.
    Akande KO, Owolabi TO, Olatunji SO, AbdulRaheem A (2016) A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir. J Pet Sci Eng 150:43–53Google Scholar
  31. 31.
    Olatunji SO, Selamat A, Raheemi AAA (2014) Improved sensitivity based linear learning method for permeability prediction of carbonate reservoir using interval type-2 fuzzy logic system. Appl Soft Comput 14:144–155Google Scholar
  32. 32.
    Owolabi TO, Akande KO, Olatunji SO (2014) Estimation of the atomic radii of periodic elements using support vector machine. Int J Adv Inf Sci Technol 28(28):39–49Google Scholar
  33. 33.
    Owolabi TO, Akande KO, Olatunji SO (2014) Prediction of superconducting transition temperatures for Fe based superconductors using support vector machine. Adv Phys Theor Appl 35:12–26Google Scholar
  34. 34.
    Owolabi TO, Akande KO, Olatunji SO (2014) Support vector machines approach for estimating work function of semiconductors: addressing the limitation of metallic plasma model. Appl Phys Res 6(5):122–132Google Scholar
  35. 35.
    Owolabi TO, Faiz M, Olatunji SO, Popoola IK (2016) Computational intelligence method of determining the energy band gap of doped ZnO semiconductor. Mater Des 101:277–284Google Scholar
  36. 36.
    Wang GF, Zhao ZR, Li LR, Zhang XF (2016) Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1+δO3 manganites. J Magn Magn Mater 397:198–204Google Scholar
  37. 37.
    Varvescu A, Deac IG (2015) Critical magnetic behavior and large magnetocaloric effect in Pr0.67Ba0.33MnO3 perovskite manganite. Phys B Condens Matter 470–471:96–101Google Scholar
  38. 38.
    Sikder S, Rathi P, Adhikari J (2011) Molecular simulation predictions of miscibility characteristics and critical exponents in compound semiconductors. J Cryst Growth 324(1):284–289Google Scholar
  39. 39.
    Sethulakshmi N et al (2015) On magnetic ordering in heavily sodium substituted hole doped lanthanum manganites. J Magn Magn Mater 391:75–82Google Scholar
  40. 40.
    Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Chniba Boudjada N, Cheikhrouhou A (2015) Influence of transition metal doping (Fe Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram Int 41(8):10177–10184Google Scholar
  41. 41.
    Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Chniba Boudjada N, Cheikhrouhou A (2015) Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J Alloys Compd 619:627–633Google Scholar
  42. 42.
    Phan TL, Thanh PQ, Sinh NH, Lee KW, Yu SC (2011) Critical behavior and magnetic entropy change in La0.7Ca0.3Mn0.9Zn0.1O3 perovskite manganite. Curr Appl Phys 11(3):830–833Google Scholar
  43. 43.
    Oumezzine E, Hcini S, Hlil E-K, Dhahri E, Oumezzine M (2014) Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method. J Alloys Compd 615:553–560Google Scholar
  44. 44.
    Mleiki A, Othmani S, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil EK (2015) Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 manganites. J Alloys Compd 645:559–565Google Scholar
  45. 45.
    Mahjoub S, Baazaoui M, M’nassri R, Rahmouni H, Boudjada NC, Oumezzine M (2014) Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0 ⩽ x ⩽ 0.075) manganites. J Alloys Compd 608:191–196Google Scholar
  46. 46.
    Jerbi A, Krichene A, Chniba-Boudjada N, Boujelben W (2015) Magnetic and magnetocaloric study of manganite compounds Pr0.5A0.05Sr0.45MnO3 (A = Na and K) and composite. Phys B Condens Matter 3:PHYSBD1500923Google Scholar
  47. 47.
    Hcini S, Boudard M, Zemni S, Oumezzine M (2014) Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3 manganites. Ceram Int 40(10):16041–16050Google Scholar
  48. 48.
    Ghodhbane S, Tka E, Dhahri J, Hlil EK (2014) A large magnetic entropy change near room temperature in La0.8Ba0.1Ca0.1Mn0.97Fe0.03O3 perovskite. J Alloys Compd 600:172–177Google Scholar
  49. 49.
    Belozerova NM et al (2015) High pressure effects on the crystal and magnetic structure of nanostructured manganites La0.63Sr0.37MnO3 and La0.72Sr0.28MnO3. J Alloys Compd 646:998–1003Google Scholar
  50. 50.
    Zaidi N, Mnefgui S, Dhahri A, Hlil EK, Dhahri J (2015) Critical parameters near the phase transition temperature in La0.67−xDyxPb0.33MnO3. J Rare Earths 33(2):168–176Google Scholar
  51. 51.
    Wang Z, Xu Q, Chen K (2012) Maximum magnetic entropy change modulated toward room temperature in perovskite manganites La0.7−xNdx (Ca, Sr)0.3MnO3. Curr Appl Phys 12(4):1153–1157Google Scholar
  52. 52.
    Wang Z, Jiang J (2013) Magnetic entropy change in perovskite manganites La0.7A0.3MnO3 La0.7A0.3Mn0.9Cr0.1O3 (A = Sr, Ba, Pb) and Banerjee criteria on phase transition. Solid State Sci 18:36–41Google Scholar
  53. 53.
    Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Boudjada NC, Cheikhrouhou A (2015) The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites. Ceram Int 41(6):7723–7728Google Scholar
  54. 54.
    Seidi S, Sayahi T (2015) A new correlation for prediction of sub-critical two-phase flow pressure drop through large-sized wellhead chokes. J Nat Gas Sci Eng 26:264–278Google Scholar
  55. 55.
    Nedelko N et al (2015) Magnetic properties and magnetocaloric effect in La0.7Sr0.3−xBixMnO3 manganites. J Alloys Compd 640:433–439Google Scholar
  56. 56.
    Kossi SEL, Ghodhbane S, Dhahri J, Hlil EK (2015) The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1 − x)TixO3 (0 ≤ x ≤ 0.2). J Magn Magn Mater 395:134–142Google Scholar
  57. 57.
    Ben Khlifa H, Regaieg Y, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A (2015) Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites. J Alloys Compd 650:676–683Google Scholar
  58. 58.
    Bellouz R, Oumezzine M, Hlil EK, Dhahri E (2015) Critical behavior near the ferromagnetic–paramagnetic phase transition in La0.65Eu0.05Sr0.3Mn1−xCrxO3 (x = 0.10 and x = 0.15). Phys B Condens Matter 456:93–99Google Scholar
  59. 59.
    Taran S et al (2015) Electrical and magnetic properties of Y-doped La0.5Sr0.5MnO3 manganite system: observation of step-like magnetization. J Alloys Compd 644:363–370Google Scholar
  60. 60.
    Bettaibi A et al (2015) Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium–calcium manganite. J Alloys Compd 650:268–276Google Scholar
  61. 61.
    Yildiz AR, Solanki KN (2011) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59:367–376Google Scholar
  62. 62.
    Yildiz AR (2009) A new design optimization framework based on immune algorithm and Taguchi’s method. Comput Ind 60:613–620Google Scholar
  63. 63.
    Durgun I, Yildiz AR (2012) Structural design optimization of vehicle components using cuckoo search algorithm. Mater Test 54:185–188Google Scholar
  64. 64.
    Yildiz AR (2012) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64:55–61Google Scholar
  65. 65.
    Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci 220:399–407MathSciNetGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  • Taoreed O. Owolabi
    • 1
    • 2
  • Luqman E. Oloore
    • 1
    • 3
    Email author
  • Kabiru O. Akande
    • 4
  • Sunday O. Olatunji
    • 5
  1. 1.Physics DepartmentKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Physics and Electronics DepartmentAdekunle Ajasin UniversityAkungba AkokoNigeria
  3. 3.Physics and Engineering Physics DepartmentObafemi Awolowo UniversityIle-IfeNigeria
  4. 4.Electrical Engineering DepartmentUniversity of EdinburghEdinburghUK
  5. 5.Computer Science DepartmentUniversity of DammamDammamKingdom of Saudi Arabia

Personalised recommendations