Skip to main content

Advertisement

Log in

Prediction of mean monthly wind speed and optimization of wind power by artificial neural networks using geographical and atmospheric variables: case of Aegean Region of Turkey

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Although there are many locations suitable to construct new wind turbines, wind speeds in those areas are not always available, which makes it difficult to plan and develop a proper wind energy conversion system. This paper proposes an approach to determine the wind speeds corresponding to locations without any past wind speed data. First, monthly mean wind speed was modeled as a function of geographical variables (latitude, longitude and elevation), atmospheric variables (ambient temperature, atmospheric pressure, percent relative humidity), and the month of the year for a case location (Aegean Region of Turkey) by artificial neural networks (ANNs) trained by the data supplied by 55 wind speed measuring stations throughout the region (660 data points). Then, the prediction ability of the ANN model was tested: The wind speed data of each station was excluded from the database, and an ANN model trained by the data of the rest of the wind stations was used to forecast the excluded data. Finally, a grid search algorithm was applied to the entire region to search for the optimum location for the maximum average annual wind speed which was found to be 10.6 m/s. A generic wind turbine was considered at this location and a power of 1.79 MW was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. GWEC (2016) Global Wind Energy Council, Global Wind Statistics. http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf. Accessed 19 Dec 2016

  2. Assareh E, Behrang MA, Ghalambaz M, Noghrehabadi AR, Ghanbarzadeh A (2012) An analysis of wind speed prediction using artificial neural networks: a case study in Manjil, Iran. Energy Sources Part A Recovery Util Environ Eff 34(7):636–644. doi:10.1080/15567036.2011.551915

    Article  Google Scholar 

  3. Kim DH, Lee GN, Kwon O (2014) Wind power prediction at southwest coast of Korea from measured wind data a. J Renew Sustain Energy 6(6):063101. doi:10.1063/1.4897462

    Article  Google Scholar 

  4. Nandha Kishore SR, Vanitha V (2013) Wind speed forecasting for grid code compliance. J Renew Sustain Energy 5(6):063125. doi:10.1063/1.4850256

    Article  Google Scholar 

  5. Zhao X, Wang S, Li T (2011) Review of evaluation criteria and main methods of wind power forecasting. Energy Procedia 12:761–769. doi:10.1016/j.egypro.2011.10.102

    Article  Google Scholar 

  6. Kavasseri RG, Seetharaman K (2009) Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34(5):1388–1393. doi:10.1016/j.renene.2008.09.006

    Article  Google Scholar 

  7. Carpinone A, Giorgio M, Langella R, Testa A (2015) Markov chain modeling for very-short-term wind power forecasting. Electr Power Syst Res 122:152–158. doi:10.1016/j.epsr.2014.12.025

    Article  Google Scholar 

  8. Monfared M, Rastegar H, Kojabadi HM (2009) A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 34(3):845–848. doi:10.1016/j.renene.2008.04.017

    Article  Google Scholar 

  9. Salcedo-Sanz S, Pérez-Bellido ÁM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Correoso F (2009) Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 72(4–6):1336–1341. doi:10.1016/j.neucom.2008.09.010

    Article  Google Scholar 

  10. Guo Z-H, Wu J, Lu H-Y, Wang J-Z (2011) A case study on a hybrid wind speed forecasting method using BP neural network. Knowl Based Syst 24(7):1048–1056. doi:10.1016/j.knosys.2011.04.019

    Article  Google Scholar 

  11. Azad HB, Mekhilef S, Ganapathy VG (2014) Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans Sustain Energy 5(2):546–553. doi:10.1109/tste.2014.2300150

    Article  Google Scholar 

  12. Salcedo-Sanz S, Ángel MP-B, Ortiz-García EG, Portilla-Figueras A, Prieto L, Paredes D (2009) Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew Energy 34(6):1451–1457. doi:10.1016/j.renene.2008.10.017

    Article  Google Scholar 

  13. Cadenas E, Rivera W (2010) Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew Energy 35(12):2732–2738. doi:10.1016/j.renene.2010.04.022

    Article  Google Scholar 

  14. Guo Z, Zhao J, Zhang W, Wang J (2011) A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 36(3):1668–1679. doi:10.1016/j.energy.2010.12.063

    Article  Google Scholar 

  15. Catalão JPS, Pousinho HMI, Mendes VMF (2011) Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36(4):1245–1251. doi:10.1016/j.renene.2010.09.016

    Article  Google Scholar 

  16. Liu H, Chen C, Tian H-Q, Li Y-F (2012) A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48:545–556. doi:10.1016/j.renene.2012.06.012

    Article  Google Scholar 

  17. Liu H, Tian H-Q, Pan D-F, Li Y-F (2013) Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl Energy 107:191–208. doi:10.1016/j.apenergy.2013.02.002

    Article  Google Scholar 

  18. Chen K, Yu J (2014) Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl Energy 113:690–705. doi:10.1016/j.apenergy.2013.08.025

    Article  Google Scholar 

  19. Mohandes MA, Rehman S (2014) Short term wind speed estimation in Saudi Arabia. J Wind Eng Ind Aerodyn 128:37–53. doi:10.1016/j.jweia.2014.02.007

    Article  Google Scholar 

  20. Wang J, Zhang W, Wang J, Han T, Kong L (2014) A novel hybrid approach for wind speed prediction. Inf Sci 273:304–318. doi:10.1016/j.ins.2014.02.159

    Article  Google Scholar 

  21. Wang J, Qin S, Zhou Q, Jiang H (2015) Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew Energy 76:91–101. doi:10.1016/j.renene.2014.11.011

    Article  Google Scholar 

  22. Bilgili M, Sahin B, Yasar A (2007) Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energy 32(14):2350–2360. doi:10.1016/j.renene.2006.12.001

    Article  Google Scholar 

  23. Bilgili M, Sahin B (2013) Wind speed prediction of target station from reference stations data. Energy Sources Part A Recovery Util Environ Eff 35(5):455–466. doi:10.1080/15567036.2010.512906

    Article  Google Scholar 

  24. Philippopoulos K, Deligiorgi D (2012) Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energy 38(1):75–82. doi:10.1016/j.renene.2011.07.007

    Article  Google Scholar 

  25. Velo R, López P, Maseda F (2014) Wind speed estimation using multilayer perceptron. Energy Convers Manag 81:1–9. doi:10.1016/j.enconman.2014.02.017

    Article  Google Scholar 

  26. Mohandes MA, Rehman S, Rahman SM (2012) Spatial estimation of wind speed. Int J Energy Res 36(4):545–552. doi:10.1002/er.1774

    Article  Google Scholar 

  27. Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 87(3):934–942. doi:10.1016/j.apenergy.2009.09.005

    Article  Google Scholar 

  28. Ramasamy P, Chandel SS, Yadav AK (2015) Wind speed prediction in the mountainous region of India using an artificial neural network model. Renew Energy 80:338–347. doi:10.1016/j.renene.2015.02.034

    Article  Google Scholar 

  29. Günay ME, Yildirim R (2011) Neural network analysis of selective CO oxidation over copper-based catalysts for knowledge extraction from published data in the literature. Ind Eng Chem Res 50(22):12488–12500. doi:10.1021/ie2013955

    Article  Google Scholar 

  30. TEIAS (2015) Turkish Electricity Transmission Company, Electricity Generation and Transmission Statics of Turkey. http://www.teias.gov.tr/T%C3%BCrkiyeElektrik%C4%B0statistikleri/istatistik2015/istatistik2015.htm. Accessed 19 Dec 2016

  31. Ilkiliç C, Aydin H (2015) Wind power potential and usage in the coastal regions of Turkey. Renew Sustain Energy Rev 44:78–86. doi:10.1016/j.rser.2014.12.010

    Article  Google Scholar 

  32. TUREB (2016) Turkish Wind Energy Statistics Report, July 2016. http://www.tureb.com.tr/en/publications. Accessed 19 Dec 2016

  33. TUMAS (2014) Turkish Meteorological Data Archive System. http://tumas.mgm.gov.tr/wps/portal. Accessed 19 Dec 2016

  34. ECMWF (2016) European Centre for Medium-Range Weather Forecasts. http://www.ecmwf.int. Accessed 19 Dec 2016

  35. Bañuelos-Ruedas F, Angeles-Camacho C, Rios-Marcuello S (2011) Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region. In: Gastón OS (ed) Wind farm—technical regulations, potential estimation and siting assessment. doi:10.5772/20669

    Google Scholar 

  36. Gualtieri G, Secci S (2012) Methods to extrapolate wind resource to the turbine hub height based on power law: a 1-h wind speed vs. Weibull distribution extrapolation comparison. Renew Energy 43:183–200. doi:10.1016/j.renene.2011.12.022

    Article  Google Scholar 

  37. Wang J, Zhang W, Li Y, Wang J, Dang Z (2014) Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23:452–459. doi:10.1016/j.asoc.2014.06.027

    Article  Google Scholar 

  38. Wilamowski BM, Chen Y (1999) Efficient algorithm for training neural networks with one hidden layer. In: Proceedings of international joint conference on neural networks, vol 3, pp 1725–1728

  39. Pan X, Lee B, Zhang C (2013) A comparison of neural network backpropagation algorithms for electricity load forecasting. In: IEEE international workshop on intelligent energy systems, pp 22–27

  40. Sung AH (1998) Ranking importance of input parameters of neural networks. Expert Syst Appl 15:405–411

    Article  Google Scholar 

  41. Altitude.nu (2015) Find the elevation of any place. http://www.altitude.nu. Accessed 19 Dec 2016

  42. Vestas (2016) Turbines. https://www.vestas.com/en/products/turbines. Accessed 19 Dec 2016

  43. Saberivahidaval M, Hajjam S (2015) Comparison between performances of different neural networks for wind speed forecasting in Payam airport, Iran. Environ Prog Sustain Energy. doi:10.1002/ep.12081

    Article  Google Scholar 

  44. Manyonge AW, Ochieng RM, Onyango FN, Shichikha JM (2012) Mathematical modelling of wind turbine in a wind energy conversion system: power coefficient analysis. Appl Math Sci 6(91):4527–4536

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Turkish General Directorate of Meteorology for providing wind speed data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erdem Günay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulkat, D., Günay, M.E. Prediction of mean monthly wind speed and optimization of wind power by artificial neural networks using geographical and atmospheric variables: case of Aegean Region of Turkey. Neural Comput & Applic 30, 3037–3048 (2018). https://doi.org/10.1007/s00521-017-2895-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2895-x

Keywords

Navigation