Toward intelligent transient stability enhancement in inverter-based microgrids

Abstract

Nowadays, the concept of multiple inverter-interfaced distributed generations (IIDGs)-based MG is recognized as a renowned notion. Encountering unexpected transient situations, the fast inflexible response of IIDG may contribute in serious concerns over its successful operation. Contemplating the transient stability paradigm, first swing stability of the investigated system is the mostly pinpointed matter. In the state-of-the-art indices in transient analysis of IIDG-based technologies, the current index is referred as the frequently deployed one. However, this index is capped within the switches’ twice rated current to afford the inverter’s physical constraints. To tackle this requirement, the ongoing study aims at devising an efficient transient current control loop (TCCL) embedded as a part of main control procedure. In this practice, the well-known simple proportional–integral (PI) controller, as the most persuasive industrial choice, is regarded as the supplementary TCCL key unit. The main functionality of the founded TCCL is deemed as a talented transient current limiter in IIDGs during the versatile possible short-circuit situations. In spite of this, the conventional fixed tuning of gains in PI controller would depreciate its safe and reliable operation encountering different contingencies. To rehabilitate this matter, fuzzy logic and artificial neural network concepts are deployed for realizing an adaptive PI controller capable of handling both the connected and autonomous modes of operation. Precise numerical studies are carried out to interrogate the performance of the proposed approach. Results are analyzed in depth.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Bevrani H, Watanabe M, Mitani Y (2012) “Microgrid controls”, in standard handbook for electrical engineers. McGraw-Hill, New York

    Google Scholar 

  2. 2.

    Gholami A, Aminifar F (2015) A hierarchical response-based approach to the load restoration problem. IEEE Trans Smart Grid 99:7352361. doi:10.1109/TSG.2015.2503320

    Article  Google Scholar 

  3. 3.

    Shekari T, Aminifar F, Sanaye-Pasand M (2016) An analytical adaptive load shedding scheme against severe combinational disturbances. IEEE Trans Power Syst 31(5):4135–4143

    Article  Google Scholar 

  4. 4.

    Shekari T, Gholami A, Aminifar F, Sanaye-Pasand M (2016) An adaptive wide-area load shedding scheme incorporating power system real-time limitations. IEEE Syst J. doi:10.1109/JSYST.2016.2535170

    Article  Google Scholar 

  5. 5.

    Gholami A, Shekari T, Aminifar F, Shahidehpour M (2016) Microgrid scheduling with uncertainty: the quest for resilience. IEEE Trans Smart Grid 7(6):2849–2858

    Article  Google Scholar 

  6. 6.

    Shekari T, Gholami A, Aminifar F (2014) Optimal parking lot placement considering operational and security limitations using COA. In: Smart grid conference (SGC), Tehran, pp 1–6

  7. 7.

    Bevrani H, Watanabe M, Mitani Y (2014) Power system monitoring and control. Wiley, Hoboken

    Google Scholar 

  8. 8.

    Pecas Lopes JA, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924

    Article  Google Scholar 

  9. 9.

    Bevrani H, Shokoohi Sh (2013) An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids. IEEE Trans Smart Grid 4(3):1505–1513

    Article  Google Scholar 

  10. 10.

    Ahmadi S, Shokoohi Sh, Bevrani H (2014) A fuzzy logic-based droop control for simultaneous voltage and frequency regulation in an AC microgrid. Int J Elect Power Energy Syst 64(15):148–155

    Google Scholar 

  11. 11.

    Al-Saedi W, Lachiwicz SW, Habibi D, Bass O (2013) Voltage and frequency regulation based DG unit in an autonomous microgrid operation using particle swarm optimization. Int J Electr Power Energy Syst 53(4):742–751

    Article  Google Scholar 

  12. 12.

    Bevrani H, Habibi F, Babahajyani P, Watanabe M, Mitani Y (2012) Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans Smart Grid 3(4):1935–1944

    Article  Google Scholar 

  13. 13.

    Bevrani H, Feizi MR, Ataee S (2015) Robust frequency control in an islanded microgrid: H and μ-synthesis approaches. IEEE Trans Smart Grids, pp 1–12

  14. 14.

    Majumder R (2013) Some aspects of stability in microgrids. IEEE Trans Power Syst 28(3):3243–3252

    Article  Google Scholar 

  15. 15.

    Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electr 22(2):613–625

    Article  Google Scholar 

  16. 16.

    Tang X, Deng W, Qi Z (2013) Investigation of the dynamic stability of microgrid. IEEE Trans Power Syst 29(2):698–702

    Article  Google Scholar 

  17. 17.

    Rowe ChN, Summers TJ, Betz RE, Cornforth DJ, Moore TG (2013) Arctan power-frequency droop for improved microgrid stability. IEEE Trans Power Electr 28(8):3747–3759

    Article  Google Scholar 

  18. 18.

    Iyer ShV, Belur MN, Chandorkar MC (2010) A generalized computational method to determine stability of a multi-inverter microgrid. IEEE Trans Power Electr 25(9):2420–2432

    Article  Google Scholar 

  19. 19.

    Mohamed YI, El-Saadany EF (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electr 23(6):2806–2816

    Article  Google Scholar 

  20. 20.

    Kasem Alaboudy AH, Zeineldin HH, Kirtley JL (2012) Microgrid stability characterization subsequent to fault-triggered islanding incidents. IEEE Trans Power Deliv 27(2):658–669

    Article  Google Scholar 

  21. 21.

    Ashabani SM, Mohamed YI (2012) A flexible control strategy for grid-connected and islanded microgrids with enhanced stability using nonlinear microgrid stabilizer. IEEE Trans Smart Grid 3(3):1291–1301

    Article  Google Scholar 

  22. 22.

    Li Y, Zhang P, Zhang L, Wang B (2017) Active synchronous detection of deception attacks in microgrid control systems. IEEE Trans Smart Grid 8(1):373–375

    Article  Google Scholar 

  23. 23.

    Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, Hatziargyriou N, Hill D, Stankovic A, Taylor C, Van Cutsem T, Vittal V (2004) Definition and classification of power system stability. IEEE Trans Power Syst 19(2):1387–1401

    Google Scholar 

  24. 24.

    Chen X, Pei W, Tang X (2010) Transient stability analysis of micro-grids with multiple distributed generations. In: Proceedings of IEEE power system technology conference (POWERCON), pp 1–8

  25. 25.

    Baran ME, El-Markaby I (2005) Fault analysis on distributed feeders with distributed generators. IEEE Trans Power Syst 20(4)

  26. 26.

    Lasseter R (2002) Integration of distributed energy resources: the CERTS microgrid concept. CERT Report

  27. 27.

    IEEE Committee Report (1968) Proposed definitions of terms for reporting and analyzing outages of electrical transmission and distribution facilities and interruptions. IEEE Trans Power Appl Syst PAS-87(5):1318–1323

    Article  Google Scholar 

  28. 28.

    Katiraei F, Iravani M (2005) Transients of a micro-grid system with multiple distributed energy resources. In: Proceedings of the international conference on power system transients (IPST05)

  29. 29.

    Wall SR (2001) Performance of inverter interfaced distributed generation. In: IEEE/PES transmission and distribution conference and exposition, pp 945–950

  30. 30.

    Keller J, Kroposki B (2010) Understanding fault characteristics of inverter-based distributed energy resources. Technical Report NREL/TP-550- 46698, National Renewable Energy Laboratory

  31. 31.

    Radial Test Feeders—IEEE Distribution System Analysis Subcommittee. [Online]. http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html

  32. 32.

    Zadeh A (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  33. 33.

    Bevrani H, Hiyama T (2011) Intelligent automatic generation control. CRC, New York

    Google Scholar 

  34. 34.

    Mamdani EH (1974) Application of fuzzy algorithms for control of dynamic plant. Proc IEEE 121(12):1585–1588

    Google Scholar 

  35. 35.

    Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Pub, Boston

    Google Scholar 

  36. 36.

    Bevrani H, Habibi F, Shokoohi S (2012) ANN-based self-tuning frequency control design for an isolated microgrid. In: Meta-heuristics optimization algorithms in engineering, business, economics, and finance, p 357

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sajjad Golshannavaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khezri, R., Golshannavaz, S., Shokoohi, S. et al. Toward intelligent transient stability enhancement in inverter-based microgrids. Neural Comput & Applic 30, 2709–2723 (2018). https://doi.org/10.1007/s00521-017-2859-1

Download citation

Keywords

  • Microgrids
  • Inverter-interfaced distributed generations (IIDGs)
  • Transient stability enhancement
  • Transient current control loop (TCCL)
  • Fuzzy logic (FL)
  • Artificial neural network (ANN)