Skip to main content
Log in

A neuro-inspired visual tracking method based on programmable system-on-chip platform

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Using programmable system-on-chip to implement computer vision functions poses many challenges due to highly constrained resources in cost, size and power consumption. In this work, we propose a new neuro-inspired image processing model and implemented it on a system-on-chip Xilinx Z702c board. With the attractor neural network model to store the object’s contour information, we eliminate the computationally expensive steps in the curve evolution re-initialisation at every new iteration or frame. Our experimental results demonstrate that this integrated approach achieves accurate and robust object tracking, when they are partially or completely occluded in the scenes. Importantly, the system is able to process 640 by 480 videos in real-time stream with 30 frames per second using only one low-power Xilinx Zynq-7000 system-on-chip platform. This proof-of-concept work has demonstrated the advantage of incorporating neuro-inspired features in solving image processing problems during occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Malamas EN, Petrakis EG, Zervakis M, Petit L, Legat JD (2003) A survey on industrial vision systems, applications and tools. Image Vis Comput 21(2):171–188

    Article  Google Scholar 

  2. Nikitakis A, Papaioannou S, Papaefstathiou I (2013) A novel low-power embedded object recognition system working at multi-frames per second. ACM Trans Embed Comput Syst (TECS) 12(33):39–58

    Google Scholar 

  3. Díaz J, Ros E, Pelayo F, Ortigosa EM, Mota S (2006) FPGA-based real-time optical-flow system. Circuits Syst Video Technol IEEE Trans 16(2):274–279

    Article  Google Scholar 

  4. Jin J, Lee S, Jeon B, Nguyen TT, Jeon JW (2013) Real-time multiple object centroid tracking for gesture recognition based on FPGA. In: Proceedings of the 7th international conference on ubiquitous information management and communication, article 80

  5. Nguyen HT, Smeulders A (2004) Tracking aspects of the foreground against the background. In Computer Vision-ECCV 2004. Springer, Berlin, pp 446–456

    Google Scholar 

  6. Lee BY, Liew LH, Cheah WS, Wang YC (2014) Occlusion handling in videos object tracking: a survey. In IOP conference series: earth and environmental science, vol 18(1). IOP Publishing, p 012020

  7. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv (CSUR) 38(4):13

    Article  Google Scholar 

  8. Yantis S, Johnson DN (1990) Mechanisms of attentional priority. J Exp Psychol Hum Percept Perform 16(4):812–825

    Google Scholar 

  9. Frintrop S, Rome E, Christensen HI (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM Transact Appl Percept (TAP) 7(1):1–39

    Article  Google Scholar 

  10. García GM, Frintrop S, Cremers AB (2013) Attention-based detection of unknown objects in a situated vision framework. KI-Künstliche Intelligenz 27(3):267–272

    Article  Google Scholar 

  11. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. Pattern Anal Mach Intell IEEE Trans 24(5):603–619

    Article  Google Scholar 

  12. Perez P, Vermaak J, Blake A (2004) Data fusion for visual tracking with particles. Proc IEEE 92(3):495–513

    Article  Google Scholar 

  13. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on IEEE, vol 1, pp 886–893

  14. Epanechnikov VA (1969) Non-parametric estimation of a multivariate probability density. Theory Probab Appl 14:153–158. doi:10.1137/1114019

    Article  MathSciNet  Google Scholar 

  15. Han M, Xu W, Gong Y (2004) An algorithm for multiple object trajectory tracking. Proc IEEE Comput Soc Conf 1:864–871

    Google Scholar 

  16. Chan TE, Vese LA (2001) A level set algorithm for minimizing the Mumford–Shah functional in image processing. In: Variational and level set methods in computer vision, 2001. Proceedings of IEEE Workshop on IEEE, pp 161–168

  17. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  Google Scholar 

  18. Mendi E, Milanova M (2010) Contour-based image segmentation using selective visual attention. J Softw Eng Appl 3(08):796

    Article  Google Scholar 

  19. Cremers D (2006) Dynamical statistical shape priors for level set-based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273

    Article  Google Scholar 

  20. Yang S, McGinnity TM (2011) A biologically plausible real-time spiking neuron simulation environment based on a multiple-FPGA platform. ACM SIGARCH Comput Archit News 39(4):78–81

    Article  Google Scholar 

  21. Johnson JS, Spencer JP, Luck SJ, Schöner G (2009) A dynamic neural field model of visual working memory and change detection. Psychol Sci 20(5):568–577

    Article  Google Scholar 

  22. Xilinx (2014) Xilinx Xpower analyzer. www.xilinx.com/products

  23. Cehovin L, Kristan M, Leonardis A (2013) Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans Pattern Anal Mach Intell 35(4):941–953

    Article  Google Scholar 

  24. Dollár P, Wojek C, Schiele B, Perona P (2009) Pedestrian detection: a benchmark. In: Computer vision and pattern recognition, 2009. CVPR 2009. IEEE conference on IEEE, pp 304–311

  25. Kruger N, Janssen P, Kalkan S, Lappe M, Leonardis A, Piater J, Wiskott L (2013) Deep hierarchies in the primate visual cortex: What can we learn for computer vision? Pattern Anal Mach Intell IEEE Trans 35(8):1847–1871

    Article  Google Scholar 

  26. Fung CC, Wong KY, Wang H, Wu S (2012) Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility. Neural Comput 24:1147–1185

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

SY was supported by the Early Research Scheme Reward from University of Wolverhampton and National High Technology Research and Development Program from China. KFW-L and SY were supported by ASUR (1014-C4-Ph1-071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wong-Lin, K., Andrew, J. et al. A neuro-inspired visual tracking method based on programmable system-on-chip platform. Neural Comput & Applic 30, 2697–2708 (2018). https://doi.org/10.1007/s00521-017-2847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2847-5

Keywords

Navigation