Skip to main content
Log in

Quality assessment for virtual reality technology based on real scene

  • Neural Computing in Next Generation Virtual Reality Technology
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Virtual reality technology is a new display technology, which provides users with real viewing experience. As known, most of the virtual reality display through stereoscopic images. However, image quality will be influenced by the collection, storage and transmission process. If the stereoscopic image quality in the virtual reality technology is seriously damaged, the user will feel uncomfortable, and this can even cause healthy problems. In this paper, we establish a set of accurate and effective evaluations for the virtual reality. In the preprocessing, we segment the original reference and distorted image into binocular regions and monocular regions. Then, the Information-weighted SSIM (IW-SSIM) or Information-weighted PSNR (IW-PSNR) values over the monocular regions are applied to obtain the IW-score. At the same time, the Stereo-weighted-SSIM (SW-SSIM) or Stereo-weighted-PSNR (SW-PSNR) can be used to calculate the SW-score. Finally, we pool the stereoscopic images score by combing the IW-score and SW-score. Experiments show that our method is very consistent with human subjective judgment standard in the evaluation of virtual reality technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stern P (2014) Virtual reality changes neuronal firing. Science 346(6213):1075–1075

    Article  Google Scholar 

  2. Komura T, Lau RW, Lin MC et al (2015) Virtual reality software and technology. IEEE Comput Graph Appl 35(5):20–21

    Article  Google Scholar 

  3. Klinghammer M, Schutz I, Blohm G, Fiehler K (2016) Allocentric information is used for memory-guided reaching in depth: A virtual reality study. Vis Res 129:13–24

    Article  Google Scholar 

  4. Zyda M (2005) From visual simulation to virtual reality to games. Computer 38(9):25–32

    Article  Google Scholar 

  5. Hartanto D, Kampmann IL, Morina N et al (2014) Controlling social stress in virtual reality environments. PLoS ONE 9(3):e92804

    Article  Google Scholar 

  6. Sa AGD, Zachmann G (1998) Integrating virtual reality for virtual prototyping. In: Computers and information in engineering conference, pp 387–399

  7. Donalek C, Djorgovski SG, Cioc A et al (2014) Immersive and collaborative data visualization using virtual reality platforms. In: IEEE international conference on big data. IEEE Computer Society, pp 609–614

  8. Lin Y, Yang J, Lv Z et al (2015) A self-assessment stereo capture model applicable to the internet of things. Sensors 15(8):20925–20944

    Article  Google Scholar 

  9. Lu F, Zhao Q, Yang G (2014) A no-reference image quality assessment approach based on steerable pyramid decomposition using natural scene statistics. Neural Comput Appl 26(1):77–90

    Article  Google Scholar 

  10. Yang J, Xu R, Lv Z, Song H. Analysis of Camera Arrays Applicable to the Internet of Things. Sensors 16(3):421–432

    Article  Google Scholar 

  11. Liu Y, Yang J, Meng Q et al (2016) Stereoscopic image quality assessment method based on binocular combination saliency model. Signal Process 125:237–248

    Article  Google Scholar 

  12. Yang J, Lin Y, Gao Z, Lv Z, Wei W, et al. (2015) Quality Index for Stereoscopic Images by Separately Evaluating Adding and Subtracting. PLOS ONE 10(12):1–19

    Google Scholar 

  13. Damera-Venkata N, Kite TD, Geisler WS et al. (2000) Image quality assessment based on a degradation model. IEEE Trans Image Process A Publ IEEE Signal Process Soc 9(4):636–650

    Article  Google Scholar 

  14. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  Google Scholar 

  15. Wang Z, Li Q (2011) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process A Publ IEEE Signal Process Soc 20(5):1185–98

    Article  MathSciNet  MATH  Google Scholar 

  16. Sheikh HR, Bovik AC, Veciana GD (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process A Publ IEEE Signal Process Soc 14(12):2117–28

    Article  Google Scholar 

  17. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process A Publ IEEE Signal Process Soc 15(2):430–444

    Article  Google Scholar 

  18. Chandler DM, Hemami SS (2007) VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans Image Process A Publ IEEE Signal Process Soc 16(9):2284–98

    Article  MathSciNet  Google Scholar 

  19. Zhang L, Zhang D and Mou X (2010) RFSIM: A feature based image quality assessment metric using Riesz transforms. In: IEEE International Conference on Image Processing, pp 321–324

  20. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process A Publ IEEE Signal Process Soc 20(12):3350–64

    Article  MathSciNet  MATH  Google Scholar 

  21. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21(8):3339–52

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin YH, Wu JL (2014) Quality assessment of stereoscopic 3D image compression by binocular integration behaviors. IEEE Trans Image Process 23(4):1527–42

    Article  MathSciNet  MATH  Google Scholar 

  23. Benoit A, Callet PL, Campisi P et al (2008) Using disparity for quality assessment of stereoscopic images. In: 15th IEEE international conference on image processing, 2008. ICIP 2008. IEEE, pp 389–392

  24. Chen MJ, Su CC, Kwon DK et al (2013) Full-reference quality assessment of stereopairs accounting for rivalry. Signal Process Image Commun 28(9):1143–1155

    Article  Google Scholar 

  25. Kang L, Ye P, Li Y and Doermann D (2014) Convolutional Neural Networks for No-Reference Image Quality Assessment. In: IEEE conference on computer vision and pattern recognition, pp 1733–1740

  26. Zhang W, Qu C, Ma L, Guan J, Huang R (2016), Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network. Pattern Recognit 59:176–187

    Article  Google Scholar 

  27. Shao F, Lin W, Jiang G and Dai Q (2016) Models of Monocular and Binocular Visual Perception in Quality Assessment of Stereoscopic Images. IEEE Trans Comput Imaging 2(2):123–135

    Article  MathSciNet  Google Scholar 

  28. Tang H, Joshi N, Kapoor A (2014) Blind image quality assessment using semi-supervised rectifier networks. In: IEEE conference on computer vision and pattern recognition, pp 2877–2884

  29. Xue W, Zhang L and Mou X (2013) Learning without Human Scores for Blind Image Quality Assessment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 995-1002

  30. Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19(1):143–153

    Google Scholar 

  31. Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  32. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: Conference record of the thirty-seventh asilomar conference on signals, systems and computers, vol 2. pp 1398–1402

  33. Ye P, Doermann D (2011) No-reference image quality assessment based on visual codebook. In: IEEE international conference on image processing, pp 3089–3092

  34. Doermann D (2012) Unsupervised feature learning framework for no-reference image quality assessment. In: IEEE conference on computer vision and pattern recognition, IEEE Computer Society, pp 1098–1105

  35. Li C, Bovik AC, Wu X (2011) Blind image quality assessment using a general regression neural network. IEEE Trans Neural Netw 22(5):793–799

    Article  Google Scholar 

  36. Zhang L, Zhang L, Mou X et al (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process A Publ IEEE Signal Process Soc 20(8):2378–86

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu A, Lin W, Narwaria M (2012) Image quality assessment based on gradient similarity. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21(4):1500–12

    MathSciNet  MATH  Google Scholar 

  38. Zhang L, Shen Y, Li H (2014) VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans Image Process 23(10):4270–81

    Article  MathSciNet  MATH  Google Scholar 

  39. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  40. Li C, Bovik AC (2010) Content-weighted video quality assessment using a three-component image model. J Electron Imaging 29(1):143–153

    Google Scholar 

  41. Yang D, Guo P (2011) Image modeling with combined optimization techniques for image semantic annotation. Neural Comput Appl 20(7):1001–1015

    Article  Google Scholar 

  42. Chen L, Li C, Huang T et al. (2014) Memristor crossbar-based unsupervised image learning. Neural Comput Appl 25(2):393–400

    Article  Google Scholar 

  43. Moorthy AK, Su CC, Mittal A et al (2013) Subjective evaluation of stereoscopic image quality. Signal Process Image Commun 28(8):870–883

    Article  Google Scholar 

  44. Gottschalk PG, Dunn JR (2005) The five-parameter logistic: a characterization and comparison with the four-parameter logistic. Anal Biochem 343(1):54–65

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by National Natural Science Foundation of China (Nos. 61471260 and 61271324) and Natural Science Foundation of Tianjin (No. 16JCYBJC16000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihan Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Yang, J., Jiang, N. et al. Quality assessment for virtual reality technology based on real scene. Neural Comput & Applic 29, 1199–1208 (2018). https://doi.org/10.1007/s00521-016-2828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2828-0

Keywords

Navigation