Skip to main content

Potential ANN prediction model for multiperformances WEDM on Inconel 718

Abstract

This paper proposes a machining performance prediction approach on multiple performances of wire electrical discharge machining (WEDM) on Inconel 718. Artificial neural network (ANN) is emphasized to predict the machining performances. Many efforts have been made to model the performances of WEDM using ANN. However, to obtain the best ANN model, generally the network parameters are not consistent and so far, the selection has been made in a random manner and resulted in an excessive experimental trial. Taguchi design orthogonal array L256 is implemented in the process of network parameter selection to search for the potential machining model. This approach, prescribed as OrthoANN, is simplified to avoid as much as unnecessary experimentations. Material removal rate, surface roughness (R a), cutting speed (V c) and sparking gap (S g) are the machining performances considered in this study. Five machining parameters considered; pulse on time, pulse off time, peak current, servo voltage and flushing pressure. Cascade forward back-propagation neural network (CFNN) is found to be the best network type of the selected data set. One hidden layer 5–14–4 CFNN showed the most precise and generalized network architecture with very good prediction accuracy. An average of 5.16% error is generated which seems to be in superior concurrence with the actual experimental results. Confirmation test is carried out to verify the machining performances suggested by this approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300

    Article  Google Scholar 

  2. Huang J-T, Liao Y-S (2003) Optimization of machining parameters of wire-EDM based on grey relational and statistical analyses. Int J Prod Res 41(8):1707–1720

    Article  Google Scholar 

  3. Venkatesan D, Kannan K, Saravanan R (2008) A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput Appl 18(2):135–140. doi:10.1007/s00521-007-0166-y

    Article  Google Scholar 

  4. Kara F, Aslantas K, Çiçek A (2014) ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Comput Appl 26(1):237–250. doi:10.1007/s00521-014-1721-y

    Article  Google Scholar 

  5. Karabulut Ş, Karakoç H (2015) Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters. Neural Comput Appl. doi:10.1007/s00521-015-2058-x

    Article  Google Scholar 

  6. Tsai K-M, Wang P-J (2001) Predictions on surface finish in electrical discharge machining based upon neural network models. Int J Mach Tools Manuf 41(10):1385–1403. doi:10.1016/S0890-6955(01)00028-1

    Article  Google Scholar 

  7. Juhr H, Künanz K, Nestler A, Leitte G (2004) Generation of parameter technologies for EDM die sinking with artificial neural networks (ANN) and nonlinear regression functions (NRF). Forschungsergebnis bericht, TU Dresden, Germany

  8. Fenggou C, Dayong Y (2004) The study of high efficiency and intelligent optimization system in EDM sinking process. J Mater Process Technol 149(1–3):83–87. doi:10.1016/j.jmatprotec.2003.10.059

    Article  Google Scholar 

  9. Panda DK, Bhoi RK (2005) Artificial neural network prediction of material removal rate in electro discharge machining. Mater Manuf Process 20(4):645–672. doi:10.1081/amp-200055033

    Article  Google Scholar 

  10. Assarzadeh S, Ghoreishi M (2007) Neural-network-based modeling and optimization of the electro-discharge machining process. Int J Adv Manuf Technol 39(5):488–500. doi:10.1007/s00170-007-1235-1

    Article  Google Scholar 

  11. Markopoulos AP, Manolakos DE, Vaxevanidis NM (2008) Artificial neural network models for the prediction of surface roughness in electrical discharge machining. J Intell Manuf 19(3):283–292. doi:10.1007/s10845-008-0081-9

    Article  Google Scholar 

  12. Pradhan MK, Biswas CK (2010) Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel. Int J Adv Manuf Technol 50(5):591–610. doi:10.1007/s00170-010-2531-8

    Article  Google Scholar 

  13. Patowari PK, Saha P, Mishra PK (2010) Artificial neural network model in surface modification by EDM using tungsten–copper powder metallurgy sintered electrodes. Int J Adv Manuf Technol 51(5):627–638. doi:10.1007/s00170-010-2653-z

    Article  Google Scholar 

  14. Panda DK (2010) Modelling and optimization of multiple process attributes of electrodischarge machining process by using a new hybrid approach of neuro-grey modeling. Mater Manuf Process 25(6):450–461. doi:10.1080/15394450902996551

    Article  Google Scholar 

  15. Pradhan MK, Das R (2011) Recurrent neural network estimation of material removal rate in electrical discharge machining of AISI D2 tool steel. Proc Inst Mech Eng Part B J Eng Manuf 225(3):414–421. doi:10.1177/2041297510394083

    Article  Google Scholar 

  16. Joshi S, Pande S (2011) Intelligent process modeling and optimization of die-sinking electric discharge machining. Appl Soft Comput 11(2):2743–2755. doi:10.1016/j.asoc.2010.11.005

    Article  Google Scholar 

  17. Bharti PS, Maheshwari S, Sharma C (2012) Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J Mech Sci Technol 26(6):1875–1883

    Article  Google Scholar 

  18. Das R, Pradhan MK (2013) ANN modelling for surface roughness in electrical discharge machining: a comparative study. Int J Serv Comput Oriented Manuf 1(2):124–140

    Article  Google Scholar 

  19. Khan MAR, Rahman MM, Kadirgama K (2014) Neural network modeling and analysis for surface characteristics in electrical discharge machining. Procedia Eng 90:631–636. doi:10.1016/j.proeng.2014.11.783

    Article  Google Scholar 

  20. Maity K, Mishra H (2016) ANN modelling and Elitist teaching learning approach for multi-objective optimization of μ-EDM. J Intell Manuf. doi:10.1007/s10845-016-1193-2

    Article  Google Scholar 

  21. Zain AM, Haron H, Sharif S (2009) Review of ANN technique for modeling surface roughness performance measure in machining process. In: Third Asia international conference on modelling and simulation (AMS ‘09). IEEE, pp 35–39

  22. Krishna Mohana Rao G, Hanumantha Rao D (2010) Hybrid modeling and optimization of hardness of surface produced by electric discharge machining using artificial neural networks and genetic algorithm. J Eng Appl Sci 5:72–81

    Google Scholar 

  23. Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35(12):1693–1701. doi:10.1016/0890-6955(95)00019-T

    Article  Google Scholar 

  24. Sarkar S, Mitra S, Bhattacharyya B (2006) Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int J Adv Manuf Technol 27(5):501–508. doi:10.1007/s00170-004-2203-7

    Article  Google Scholar 

  25. Saha P, Singha A, Pal SK, Saha P (2008) Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. Int J Adv Manuf Technol 39(1):74–84. doi:10.1007/s00170-007-1200-z

    Article  Google Scholar 

  26. Bouacha K, Terrab A (2016) Hard turning behavior improvement using NSGA-II and PSO-NN hybrid model. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8479-6

    Article  Google Scholar 

  27. Parveen RNM, Memon FA, Zaman S, Ali M (2016) A review and survey of artificial neural network in medical science. J Adv Res Comput Appl 3(1):8–17

    Article  Google Scholar 

  28. Jayne C, Iliadis L, Mladenov V (2016) Special issue on the engineering applications of neural networks. Neural Comput Appl 27(5):1075–1076. doi:10.1007/s00521-016-2318-4

    Article  Google Scholar 

  29. Sakarya S, Yavuz M, Karaoglan AD, Özdemir N (2015) Stock market index prediction with neural network during financial crises: a review on Bist-100. Financ Risk Manag Rev 1(2):53–67

    Article  Google Scholar 

  30. Nidhra S, Dondeti J (2012) Blackbox and whitebox testing techniques-a literature review. Int J Embed Syst Appl (IJESA) 2(2):29–50

    Google Scholar 

  31. Pressman RS (2005) Software engineering: a practitioner’s approach. Mc Graw-Hill Higher Education, Boston

    MATH  Google Scholar 

  32. Hedayat AS, Sloane NJA, Stufken J (2012) Orthogonal arrays: theory and applications. Springer, Berlin

    MATH  Google Scholar 

  33. Taguchi G, Yokoyama Y (1993) Taguchi methods: design of experiments, vol 4. ASI Press

  34. Tang B (1993) Orthogonal array-based latin hypercubes. J Am Stat Assoc 88(424):1392–1397. doi:10.2307/2291282

    Article  MathSciNet  MATH  Google Scholar 

  35. Zain AM, Haron H, Qasem SN, Sharif S (2012) Regression and ANN models for estimating minimum value of machining performance. Appl Math Model 36(4):1477–1492. doi:10.1016/j.apm.2011.09.035

    Article  MATH  Google Scholar 

  36. Karagiannis S, Iakovakis V, Kechagias J, Fountas N, Vaxevanidis N (2013) Prediction of surface texture characteristics in turning of FRPs using ann. In: Iliadis L, Papadopoulos H, Jayne C (eds) Proceedings of the 14th international conference on engineering applications of neural networks (EANN 2013), Halkidiki, Greece, September 13–16, part I. Springer, Berlin, pp 144–153. doi:10.1007/978-3-642-41013-0_15

    Chapter  Google Scholar 

  37. Ming W, Ma J, Zhang Z, Huang H, Shen D, Zhang G, Huang Y (2016) Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8455-1

    Article  Google Scholar 

  38. Rangajanardhaa G, Rao S (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J Mater Process Technol 209:1512–1520

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly appreciate the reviewers for useful advices and positive comments. This work is partially sponsored by the Research Management Centre, UTM and Ministry of Higher Education Malaysia (MOHE) for financial support through the Fundamental Research Grant Scheme (FRGS) Vot. No. R.J130000.7828.4F721.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusliza Yusoff.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusoff, Y., Mohd Zain, A., Sharif, S. et al. Potential ANN prediction model for multiperformances WEDM on Inconel 718. Neural Comput & Applic 30, 2113–2127 (2018). https://doi.org/10.1007/s00521-016-2796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2796-4

Keywords