Skip to main content
Log in

Engineering strength of fiber-reinforced soil estimated by swarm intelligence optimized regression system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Fiber-reinforced soil (FRS) has been used as a promising alternative material for civil and construction engineering. Shear strength of FRS is influenced complexly by many factors including fiber properties, soil properties, and stress conditions. This inherent complexity limits the ability of designers to assess shear strength parameters and has made it difficult to establish a mathematical model for accurately predicting the FRS shear strength. Accurately estimating the shear strength of FRS is vital for civil engineers in designing geotechnical structures and management. Thus, this work proposed a novel computational method, namely a swarm intelligence optimized regression (SIOR) system to estimate the peak shear strength of randomly distributed FRS. The SIOR system integrates a machine learning technique with an enhanced swarm intelligence algorithm to obtain reliable and good performance in prediction process. The real-world FRS dataset collected over the past 30 years was used to validate the proposed system. To demonstrate the capability of the proposed system, the SIOR modeling results were compared with those obtained using numeric predictive models. The analytical results confirm that the SIOR system is superior to a baseline machine learning model and empirical methods via cross-fold validation and hypothesis test with accuracy improvement from 44.7 to 99.7% in mean absolute percentage error. Therefore, the SIOR system can significantly improve the prediction accuracy and facilitate civil engineers in estimating the shear strength of the FRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li C, Zornberg J (2013) Mobilization of reinforcement forces in fiber-reinforced soil. J Geotech Geoenviron Eng 139(1):107–115. doi:10.1061/(ASCE)GT.1943-5606.0000745

    Article  Google Scholar 

  2. Ranjan G, Vasan RM, Charan HD (1996) Probabilistic analysis of randomly distributed fiber-reinforced soil. J Geotech Eng 122(6):419–426. doi:10.1061/(ASCE)0733-9410(1996)122:6(419)

    Article  Google Scholar 

  3. Zornberg JG (2002) Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Géotechnique 52:593–604

    Article  Google Scholar 

  4. Michalowski R, Čermák J (2003) Triaxial compression of sand reinforced with fibers. J Geotech Geoenviron Eng 129(2):125–136. doi:10.1061/(ASCE)1090-0241(2003)129:2(125)

    Article  Google Scholar 

  5. Najjar S, Sadek S, Alcovero A (2013) Quantification of model uncertainty in shear strength predictions for fiber-reinforced sand. J Geotech Geoenviron Eng 139(1):116–133. doi:10.1061/(ASCE)GT.1943-5606.0000742

    Article  Google Scholar 

  6. Chou J-S, Cheng M-Y, Wu Y-W (2013) Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models. Expert Syst Appl 40(6):2263–2274. doi:10.1016/j.eswa.2012.10.036

    Article  Google Scholar 

  7. X-h T, W-h B, X-l H, Wang W (2011) Reliability analysis using radial basis function networks and support vector machines. Comput Geotech 38(2):178–186. doi:10.1016/j.compgeo.2010.11.002

    Article  Google Scholar 

  8. Chou J-S, Lin C (2013) Predicting disputes in public-private partnership projects: classification and ensemble models. J Comput Civ Eng 27(1):51–60. doi:10.1061/(ASCE)CP.1943-5487.0000197

    Article  Google Scholar 

  9. Chou J-S, Pham A-D (2013) Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr Build Mater 49:554–563. doi:10.1016/j.conbuildmat.2013.08.078

    Article  Google Scholar 

  10. Wei X-K, Li Y-H, Li Y-F, Zhang D-F (2008) Enclosing machine learning: concepts and algorithms. Neural Comput Appl 17(3):237–243

    Article  Google Scholar 

  11. Cao MS, Pan LX, Gao YF, Novák D, Ding ZC, Lehký D, Li XL (2015) Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput Appl. doi:10.1007/s00521-015-2132-4

    Article  Google Scholar 

  12. Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

    Book  Google Scholar 

  13. Zhang H, Yang F, Li Y, Li H (2015) Predicting profitability of listed construction companies based on principal component analysis and support vector machine—evidence from China. Autom Constr 53:22–28. doi:10.1016/j.autcon.2015.03.001

    Article  Google Scholar 

  14. Chou J-S, Chong WK, Bui D-K (2016) Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications. J Comput Civ Eng 30(5):04016007. doi:10.1061/(ASCE)CP.1943-5487.0000561

    Article  Google Scholar 

  15. Chou J-S, Ngo N-T (2016) Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Appl Energy 177:751–770. doi:10.1016/j.apenergy.2016.05.074

    Article  Google Scholar 

  16. Pal M, Deswal S (2011) Support vector regression based shear strength modelling of deep beams. Comput Struct 89(13–14):1430–1439. doi:10.1016/j.compstruc.2011.03.005

    Article  Google Scholar 

  17. Martins FF, Begonha A, Amália Sequeira Braga M (2012) Prediction of the mechanical behavior of the Oporto granite using data mining techniques. Expert Syst Appl 39(10):8778–8783. doi:10.1016/j.eswa.2012.02.003

    Article  Google Scholar 

  18. Chou J-S, Ngo N-T, Chong WK (2016) The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Eng Appl Artif Intell. doi:10.1016/j.engappai.2016.09.008

    Article  Google Scholar 

  19. Yang X-S (2014) Analysis of algorithms. In: Nature-inspired optimization algorithms. Elsevier, Oxford, pp 23–44. doi:10.1016/B978-0-12-416743-8.00002-6

    Chapter  Google Scholar 

  20. Roque CMC, Martins PALS (2015) Differential evolution for optimization of functionally graded beams. Compos Struct 133:1191–1197. doi:10.1016/j.compstruct.2015.08.041

    Article  Google Scholar 

  21. Yang X-S (2014) Firefly algorithms. In: Yang X-S (ed) Nature-inspired optimization algorithms. Elsevier, Oxford, pp 111–127. doi:10.1016/B978-0-12-416743-8.00008-7

    Chapter  Google Scholar 

  22. Chou J-S, Ngo N-T, Pham A-D (2016) Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression. J Comput Civ Eng 30(1):04015002. doi:10.1061/(ASCE)CP.1943-5487.0000466

    Article  Google Scholar 

  23. Ibraim E, Fourmont S (2007) Behaviour of sand reinforced with fibres. Soil Stress Strain Behav Meas Model Anal 146:807–818. doi:10.1007/978-1-4020-6146-2_60

    Article  Google Scholar 

  24. Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2012) A simple review of soil reinforcement by using natural and synthetic fibers. Constr Build Mater 30:100–116. doi:10.1016/j.conbuildmat.2011.11.045

    Article  Google Scholar 

  25. Consoli N, Prietto P, Ulbrich L (1998) Influence of fiber and cement addition on behavior of sandy soil. J Geotech Geoenviron Eng 124(12):1211–1214. doi:10.1061/(ASCE)1090-0241(1998)124:12(1211)

    Article  Google Scholar 

  26. Ahmad F, Bateni F, Azmi M (2010) Performance evaluation of silty sand reinforced with fibres. Geotext Geomembr 28(1):93–99. doi:10.1016/j.geotexmem.2009.09.017

    Article  Google Scholar 

  27. Sivakumar Babu GL, Vasudevan AK, Haldar S (2008) Numerical simulation of fiber-reinforced sand behavior. Geotext Geomembr 26(2):181–188. doi:10.1016/j.geotexmem.2007.06.004

    Article  Google Scholar 

  28. Chauhan MS, Mittal S, Mohanty B (2008) Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotext Geomembr 26(5):429–435. doi:10.1016/j.geotexmem.2008.02.001

    Article  Google Scholar 

  29. Gray DH, Ohashi H (1983) Mechanics of fiber reinforcement in sand. J Geotech Eng 109(3):335–353. doi:10.1061/(ASCE)0733-9410(1983)109:3(335)

    Article  Google Scholar 

  30. Maher M, Gray D (1990) Static response of sands reinforced with randomly distributed fibers. J Geotech Eng 116(11):1661–1677. doi:10.1061/(ASCE)0733-9410(1990)116:11(1661)

    Article  Google Scholar 

  31. Cruz M, Santos JM, Cruz N (2015) Using neural networks and support vector regression to relate Marchetti dilatometer test parameters and maximum shear modulus. Appl Intell 42(1):135–146

    Article  Google Scholar 

  32. Sadek S, Najjar S, Freiha F (2010) Shear strength of fiber-reinforced sands. J Geotech Geoenviron Eng 136(3):490–499. doi:10.1061/(ASCE)GT.1943-5606.0000235

    Article  Google Scholar 

  33. Al-Refeai TO (1991) Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotext Geomembr 10(4):319–333. doi:10.1016/0266-1144(91)90009-L

    Article  Google Scholar 

  34. Michalowski R, Zhao A (1996) Failure of fiber-reinforced granular soils. J Geotech Eng 122(3):226–234. doi:10.1061/(ASCE)0733-9410(1996)122:3(226)

    Article  Google Scholar 

  35. Wang H, Hu D (2005) Comparison of SVM and LS-SVM for regression. In: International conference on neural networks and brain, 2005. ICNN&B ‘05, pp 279–283. doi:10.1109/ICNNB.2005.1614615

  36. Tang D, Dong S, Cai X, Zhao J (2015) A two-stage quantum-behaved particle swarm optimization with skipping search rule and weight to solve continuous optimization problem. Neural Comput Appl. doi:10.1007/s00521-015-2014-9

    Article  Google Scholar 

  37. Altun A, Şahman M (2013) Cost optimization of mixed feeds with the particle swarm optimization method. Neural Comput Appl 22(2):383–390. doi:10.1007/s00521-011-0701-8

    Article  Google Scholar 

  38. Yang X-S (2008) Firefly algorithm. Nature-inspired metaheuristic algorithms. Luniver Press, Bristol

    Google Scholar 

  39. Fister I, Fister I Jr, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46. doi:10.1016/j.swevo.2013.06.001

    Article  Google Scholar 

  40. Liu B, Wang L, Jin Y-H, Tang F, Huang D-X (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271. doi:10.1016/j.chaos.2004.11.095

    Article  MATH  Google Scholar 

  41. He D, He C, Jiang LG, Zhu HW, Hu GR (2001) Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans Circuits Syst I Fundam Theory Appl 48(7):900–906

    Article  MathSciNet  Google Scholar 

  42. Geisel T, Nierwetberg J, Zacherl A (1985) Accelerated diffusion in Josephson junctions and related chaotic systems. Phys Rev Lett 54(7):616–619

    Article  Google Scholar 

  43. Pavlyukevich I (2007) Cooling down Lévy flights. J Phys A Math Theor 40(41):12299. doi:10.1088/1751-8113/40/41/003

    Article  MathSciNet  MATH  Google Scholar 

  44. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: The international joint conference on artificial intelligence, pp 1137–1143

  45. Gray D, Al-Refeai T (1986) Behavior of fabric-versus fiber-reinforced sand. J Geotech Eng 112(8):804–820. doi:10.1061/(ASCE)0733-9410(1986)112:8(804)

    Article  Google Scholar 

  46. Shao W, Cetin B, Li Y, Li J, Li L (2014) Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber. Geotech Geol Eng 32(4):901–910. doi:10.1007/s10706-014-9766-3

    Article  Google Scholar 

  47. Ibraim E, Fourmont S (2007) Behaviour of sand reinforced with fibres. In: Ling H, Callisto L, Leshchinsky D, Koseki J (eds) Soil stress–strain behavior: measurement, modeling and analysis, vol 146., Solid mechanics and its applicationsSpringer, Berlin, pp 807–818. doi:10.1007/978-1-4020-6146-2_60

    Chapter  Google Scholar 

  48. Yetimoglu T, Salbas O (2003) A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotext Geomembr 21(2):103–110. doi:10.1016/S0266-1144(03)00003-7

    Article  Google Scholar 

  49. Consoli NC, Casagrande MDT, Coop MR (2007) Performance of a fibre-reinforced sand at large shear strains. Géotechnique 57:751–756

    Article  Google Scholar 

  50. Consoli NC, Festugato L, Heineck KS (2009) Strain-hardening behaviour of fibre-reinforced sand in view of filament geometry. Geosynth Int 16:109–115

    Article  Google Scholar 

  51. Nataraj MS, McManis KL (1997) Strength and deformation properties of soils reinforced with fibrillated fibers. Geosynth Int 4:65–79

    Article  Google Scholar 

  52. Consoli NC, Montardo JP, Donato M, Prietto PD (2004) Effect of material properties on the behaviour of sand—cement—fibre composites. Proc ICE Ground Improv 8:77–90

    Article  Google Scholar 

  53. Chen C-W (2007) A constitutive model for fiber-reinforced soils. University of Missouri, Columbia

    Google Scholar 

  54. Gregory GH (2006) Shear strength, creep and stability of fiber-reinforced soil slopes. Oklahoma State University, Stillwater

    Google Scholar 

  55. Al-Refeai T, Al-Suhaibani A (1998) Dynamic and static characterization of polypropylene fiber-reinforced dune sand. Geosynth Int 5(5):443–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Sheng Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, JS., Ngo, NT. Engineering strength of fiber-reinforced soil estimated by swarm intelligence optimized regression system. Neural Comput & Applic 30, 2129–2144 (2018). https://doi.org/10.1007/s00521-016-2739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2739-0

Keywords

Navigation