Skip to main content

Cubic-RBF-ARX modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process

Abstract

This paper presents a data-driven modeling technique used to build a multi-sampling-rate RBF-ARX (MSR-RBF-ARX) model for capturing and quantifying global nonlinear characteristics of the head and tail stage drying process of a cylinder-type cut tobacco drier. In order to take full account of influence of the input variables to outlet cut tobacco moisture content in whole drying process, and meanwhile, to avoid orders of the model too large, this paper designs a special MSR-RBF-ARX model structure that incorporates the advantages of parametric model and nonparametric model in nonlinear dynamics description for the process. Considering this industrial process identification problem, a hybrid optimization algorithm is proposed to identify the MSR-RBF-ARX model using the multi-segment historical data set in different seasons and working conditions. To obtain better long-term forecasting performance of the model, a long-term forecasting performance index is introduced in the algorithm. To accelerate the computational convergence, in the hybrid algorithm, one-step predictive errors of the model are minimized first to get a set of the model parameters that are just used as the model initial parameters, and then, the model parameters are further optimized by minimizing long-term forecasting errors of the model. Based on the estimated model, a set of optimal setting curves of the input variables are obtained by optimizing parameters of the designed input variable models. The effectiveness of the proposed modeling and setting control strategy for the process are demonstrated by simulation studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Legros R, Alan Millington C, Clift R (1994) Drying of tobacco particles in a mobilised bed. Dry Technol 12(3):517–543

    Article  Google Scholar 

  2. 2.

    Wang H, Xin H, Liao Z, Li J, Xie W, Zeng Q, Li Y, Li Q, Chen X (2014) Study on the effect of cut tobacco drying on the pyrolysis and combustion properties. Dry Technol 32(2):130–134

    Article  Google Scholar 

  3. 3.

    Ludnev I (1996) Investigations on the technology of thermal and humidity treatment of tobacco. Presented at Cooperation Centre for Scientific Research Relative to Tobacco, Japan

  4. 4.

    Kiranoudis C, Maroulis Z, Marinos-Kouris D (1990) Mass transfer modeling for Virginia tobacco curing. Dry Technol 8(2):351–366

    Article  Google Scholar 

  5. 5.

    Pakowski Z, Druzdzel A, Drwiega J (2004) Validation of a model of an expanding superheated steam flash dryer for cut tobacco based on processing data. Dry Technol 22(1–2):45–57

    Article  Google Scholar 

  6. 6.

    Alvarez-López I, Llanes-Santiago O, Verdegay JL (2005) Drying process of tobacco leaves by using a fuzzy controller. Fuzzy Sets Syst 150(3):493–506

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Ławryńczuk M (2011) Accuracy and computational efficiency of suboptimal nonlinear predictive control based on neural models. Appl Soft Comput 11(2):2202–2215

    Article  Google Scholar 

  8. 8.

    Nelles O (2013) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  9. 9.

    Peng H, Ozaki T, Haggan-Ozaki V, Toyoda Y (2003) A parameter optimization method for radial basis function type models. IEEE Trans Neural Netw 14(2):432–438

    Article  MATH  Google Scholar 

  10. 10.

    Haggan-Ozaki V, Ozaki T, Toyoda Y (2009) An Akaike state-space controller for RBF-ARX models. IEEE Trans Control Syst Technol 17(1):191–198

    Article  Google Scholar 

  11. 11.

    Peng H, Nakano K, Shioya H (2007) Nonlinear predictive control using neural nets-based local linearization ARX model-stability and industrial application. IEEE Trans Control Syst Technol 15(1):130–143

    Article  Google Scholar 

  12. 12.

    Peng H, Wu J, Inoussa G, Deng Q, Nakano K (2009) Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model. Control Eng Pract 17(1):59–66

    Article  Google Scholar 

  13. 13.

    Zhou F, Peng H, Qin Y, Zeng X, Xie W, Wu J (2015) RBF-ARX model-based MPC strategies with application to a water tank system. J Process Control 34:97–116

    Article  Google Scholar 

  14. 14.

    Wu J, Peng H, Ohtsu K, Kitagawa G, Itoh T (2012) Ship’s tracking control based on nonlinear time series model. Appl Ocean Res 36:1–11

    Article  Google Scholar 

  15. 15.

    Qin Y, Peng H, Ruan W, Wu J, Gao J (2014) A modeling and control approach to magnetic levitation system based on state-dependent ARX model. J Process Control 24(1):93–112

    Article  Google Scholar 

  16. 16.

    Wu J, Peng H, Chen Q, Peng X (2014) Modeling and control approach to a distinctive quadrotor helicopter. ISA Trans 53(1):173–185

    Article  Google Scholar 

  17. 17.

    Priestley M (1980) State-dependent models: a general approach to non-linear time series analysis. J Time Ser Anal 1(1):47–71

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Harpham C, Dawson CW (2006) The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 69(16):2161–2170

    Article  Google Scholar 

  19. 19.

    Gan M, Peng H, Chen L (2012) A global-local optimization approach to parameter estimation of RBF-type models. Inf Sci 197:144–160

    Article  Google Scholar 

  20. 20.

    Gan M, Peng H, X-p Dong (2012) A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction. Appl Math Model 36(7):2907–2915

    MathSciNet  Article  Google Scholar 

  21. 21.

    Gan M, Li H-X, Peng H (2015) A variable projection approach for efficient estimation of RBF-ARX model. IEEE Trans Cybern 45(3):462–471

    Article  Google Scholar 

  22. 22.

    Gan M, Li H-X (2014) An efficient variable projection formulation for separable nonlinear least squares problems. IEEE Trans Cybern 44(5):707–711

    Article  Google Scholar 

  23. 23.

    Sadabadi MS, Shafiee M, Karrari M (2009) Two-dimensional ARMA model order determination. ISA Trans 48(3):247–253

    Article  MATH  Google Scholar 

  24. 24.

    Yamashita N, Fukushima M (2001) On the rate of convergence of the Levenberg–Marquardt method. In: Topics in numerical analysis. Springer, Vienna, pp 239–249

  25. 25.

    Xu Z, Chang X, Xu F, Zhang H (2012) Regularization: a thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learn Syst 23(7):1013–1027

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61540037, 71271215), the International Science and Technology Cooperation Program of China (2011DFA10440), the Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization of China and the Science and Technology Planning Program of Hunan Provincial Science and Technology Department (2006GK3158).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui Peng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Peng, H., Ruan, W. et al. Cubic-RBF-ARX modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process. Neural Comput & Applic 30, 1039–1053 (2018). https://doi.org/10.1007/s00521-016-2735-4

Download citation

Keywords

  • Cubic-RBF-ARX model
  • Cut tobacco drying process
  • Optimal setting control
  • Optimization method