Skip to main content
Log in

A skin membrane-driven membrane algorithm for many-objective optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Many-objective optimization problems refer to problems that hold more than three conflicting objectives, which are more challenging than those with two or three objectives. Membrane computing models, usually termed P systems, are a class of living cell-inspired computing models, which provide a rich framework for solving a variety of challenging problems. In this paper, a membrane computing model-based algorithm is proposed for many-objective optimization. Specifically, the population in the skin membrane is divided into two subpopulations, one used for guiding the convergence of populations in the internal membrane, while the other taking charge of the diversity of populations. Experimental results on benchmark test problems for many-objective optimization indicate the superiority of the developed algorithm over existing evolutionary many-objective optimization algorithms and P systems based multi-objective optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bader J, Zitzler E (2011) Hype: an algorithm for fast hypervolume-based many-objective optimization. Evolut Comput 19(1):45–76

    Article  Google Scholar 

  2. Bin G, Sheng VS (2016) A robust regularization path algorithm for-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

    Google Scholar 

  3. Bin G, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for-support vector regression. Neural Netw 67:140–150

    Article  Google Scholar 

  4. Bin G, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

  5. Bin G, Sun X, Sheng VS (2016) Machine structural minimax probability. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2544779

    Google Scholar 

  6. Cheng J, Zhang G, Wang T (2015) A membrane-inspired evolutionary algorithm based on population P systems and differential evolution for multi-objective optimization. J Comput Theor Nanosci 12(7):1150–1160

    Article  Google Scholar 

  7. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evolut Comput 20(5):773–791

    Article  Google Scholar 

  8. DíAz-Pernil D, Berciano A, PeñA-Cantillana F, GutiéRrez-Naranjo MA (2013) Segmenting images with gradient-based edge detection using membrane computing. Pattern Recogn Lett 34(8):846–855

    Article  Google Scholar 

  9. Fleming PJ, Purshouse RC, Lygoe RJ (2005) Many-objective optimization: an engineering design perspective. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, pp 14–32

  10. Freund R, Păun G, Pérez-Jiménez MJ (2005) Tissue P systems with channel states. Theor Comput Sci 330(1):101–116

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98–B(1):190–200

    Article  Google Scholar 

  12. Fu Z, Wu X, Guan C, Sun X, Ren K (2016) Towards efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans Inform Forensics Secur. doi:10.1109/TIFS.2016.2596138

    Google Scholar 

  13. Guo P, Wang J, Li B, Lee S (2014) A variable threshold-value authentication architecture for wireless mesh networks. J Internet Technol 15(6):929–936

    Google Scholar 

  14. Huang L, He X, Wang N, Xie Y (2007) P systems based multi-objective optimization algorithm. Prog Nat Sci 17(4):458–465

    Article  MathSciNet  MATH  Google Scholar 

  15. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evolut Comput 10(5):477–506

    Article  MATH  Google Scholar 

  16. Ionescu M, Paun G, Yokomori T (2006) Spiking neural P systems. Fundam Inform 71(2):279–308

    MathSciNet  MATH  Google Scholar 

  17. Ishdorj T-O, Leporati A, Pan L, Zeng X, Zhang X (2010) Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci 411(25):2345–2358

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaya Prakash V (2003) On the power of tissue P systems working in the maximal-one mode. In: Preproceedings of the workshop on membrane computing, vol 8, pp 356–364

  19. Jin X (2016) Probe machine. IEEE Trans Neural Netw Learn Syst 27(7):1405–1416

    Article  MathSciNet  Google Scholar 

  20. Kruisselbrink JW, Emmerich MTM, Bäck T, Bender A, IJzerman AP, van der Horst E (2009) Combining aggregation with Pareto optimization: a case study in evolutionary molecular design. In: Proceedings of the fifth international conference on evolutionary multi-criterion optimization, pp 453–467

  21. Leporati A, Mauri G, Zandron C, Păun G, Pérez-Jiménez MJ (2009) Uniform solutions to SAT and subset sum by spiking neural P systems. Nat Comput 8(4):681–702

    Article  MathSciNet  MATH  Google Scholar 

  22. Li B, Li J, Tang K, Yao X (2014) An improved two archive algorithm for many-objective optimization. In: Proceedings of the 2014 IEEE congress on evolutionary computation, pp 2869–2876

  23. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  24. Liu C, Han M, Wang X (2011) A multi-objective evolutionary algorithm based on membrane systems. In: Proceedings of the fourth international workshop on advanced computational intelligence, pp 103–109

  25. Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S (2015) Social network and tag sources based augmenting collaborative recommender system. IEICE Trans Inform Syst E98–D(4):902–910

    Article  Google Scholar 

  26. Martín-Vide C, Păun G, Pazos J, Rodríguez-Patón A (2003) Tissue P systems. Theor Comput Sci 296(2):295–326

    Article  MathSciNet  MATH  Google Scholar 

  27. Nishida TY (2004) An application of P system: a new algorithm for NP-complete optimization problems. In: Proceedings of the 8th world multi-conference on systems, cybernetics and informatics, pp 109–112

  28. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  29. Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans Broadcast. doi:10.1109/TBC.2016.2580920

    Google Scholar 

  30. Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MathSciNet  MATH  Google Scholar 

  31. Păun G (2012) Membrane computing: an introduction. Springer, Berlin

    MATH  Google Scholar 

  32. Păun G, Păun RA (2005) Membrane computing as a framework for modeling economic processes. In: Proceedings of the seventh international symposium on symbolic and numeric algorithms for scientific computing, pp 8–31

  33. Păun G, Suzuki Y, Tanaka H, Yokomori T (2004) On the power of membrane division in P systems. Theor Comput Sci 324(1):61–85

    Article  MathSciNet  MATH  Google Scholar 

  34. Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press Inc, Oxford

    Book  MATH  Google Scholar 

  35. Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable data auditing in public cloud storage. J Internet Technol 16(2):317–323

    Google Scholar 

  36. Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178

    Google Scholar 

  37. Song T, Pan L (2015) On the universality and non-universality of spiking neural P systems with rules on synapses. IEEE Trans Nanobiosci 14(8):960–966

    Article  Google Scholar 

  38. Song T, Pan L (2015) Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans Nanobiosci 14(1):38–44

    Article  Google Scholar 

  39. Song T, Pan L (2016) Spiking neural P systems with request rules. Neurocomputing 193(12):193–200

    Article  Google Scholar 

  40. Song T, Pan L (2016) Spiking neural P systems with request rules. Neurocomputing 193(12):193C200

    Google Scholar 

  41. Song T, Liu X, Zhao Y, Zhang X (2016) Spiking neural P systems with white hole neurons. IEEE Trans Nanobiosci. doi:10.1109/TNB.2016.2598879

    Google Scholar 

  42. Wang X, Song T, Gong F, Zheng P (2016) On the computational power of spiking neural P systems with self-organization. Sci Rep. doi:10.1038/srep27624

    Google Scholar 

  43. Wang H, Jin Y, Yao X (2016) Diversity assessment in many-objective optimization. IEEE Trans Cybern. doi:10.1109/TCYB.2016.2550502

    Google Scholar 

  44. Wen X, Ling Shao Y, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406

    Article  Google Scholar 

  45. Xia Z, Wang X, Sun X, Wang B (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291

    Article  Google Scholar 

  46. Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352

    Article  Google Scholar 

  47. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A Privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inform Forensics Secur. doi:10.1109/TIFS.2016.2590944

    Google Scholar 

  48. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl 75(4):1947–1962

    Article  Google Scholar 

  49. Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246

    Article  Google Scholar 

  50. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17(5):721–736

    Article  Google Scholar 

  51. Yuan C, Sun X, Lv R (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65

    Article  Google Scholar 

  52. Zeng X, Lei X, Liu X, Pan L (2014) On languages generated by spiking neural p systems with weights. Inf Sci 278:423–433

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731

    Article  Google Scholar 

  54. Zhang G, Gheorghe M, Chao-Zhong W (2008) A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundam Inform 87(1):93

    MathSciNet  MATH  Google Scholar 

  55. Zhang X, Tian Y, Jin Y (2014) A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans Evolut Comput 19(6):761–776

    Article  Google Scholar 

  56. Zhang X, Liu Y, Luo B, Pan L (2014) Computational power of tissue P systems for generating control languages. Inf Sci 278:285–297

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang X, Wang B, Pan L (2014) Spiking neural P systems with a generalized use of rules. Neural Comput 26:2925–2943

    Article  MathSciNet  Google Scholar 

  58. Zhang X, Zeng X, Luo B, Pan L (2014) On some classes of sequential spiking neural P systems. Neural Comput 26(5):974–997

    Article  MathSciNet  Google Scholar 

  59. Zhang X, Pan L, Paun A (2015) On the universality of axon P systems. IEEE Trans Neural Netw Learn Syst 26:2816–2829

    Article  MathSciNet  Google Scholar 

  60. Zhang X, Li J, Zhang L (2016) A multi-objective membrane algorithm guided by the skin membrane. Nat Comput 15(4):597–610

    Article  MathSciNet  Google Scholar 

  61. Zhang Y, Sun X, Baowei W (2016) Efficient algorithm for K-barrier coverage based on integer linear programming. China Commun 13(7):16–23

    Article  Google Scholar 

  62. Zhang X, Tian Y, Jin Y (2016) Approximate non-dominated sorting for evolutionary many-objective optimization. Inform Sci 369:14–33

    Article  Google Scholar 

  63. Zhangjie F, Ren K, Shu J, Sun X, Huang F (2015) Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.2506573

    Google Scholar 

  64. Zheng Y, Jeon B, Danhua X, Wu QMJ, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

  65. Zhou Z, Wang Y, Jonathan Wu QM, Yang C-N, Sun X (2016) Effective and efficient global context verification for image copy detection. IEEE Trans Inform Forensics Secur. doi:10.1109/TIFS.2016.2601065

    Google Scholar 

  66. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In Proceedings of 2004 international conference on parallel problem solving from nature-PPSN VIII, pp 832–842

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61402187, 61502001, 61502004, 61502535, 61502532 and 61502012), Beijing Natural Science Foundation (4164096) and the Fundamental Research Funds for the Central Universities (2652015340), China Postdoctoral Science Foundation funded Project (2016M592267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, L., Su, Y. et al. A skin membrane-driven membrane algorithm for many-objective optimization. Neural Comput & Applic 30, 141–152 (2018). https://doi.org/10.1007/s00521-016-2675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2675-z

Keywords

Navigation