Skip to main content

Brain mid-sagittal surface extraction based on fractal analysis


In a normal human brain, inter-hemispheric fissure separates the brain into the left and the right hemispheres. In this paper, we model IF as a mid-sagittal surface on the input 3D brain MR image. For this purpose, we introduce a new method to extract MSS. In the proposed method, lacunarity is used to extract an initial symmetry plane, and then, fractal dimension is calculated in order to measure similarity degree between two brain hemispheres. Inside of each axial slice, a thin-plate spline surface is constructed based on the FD and intensity values, and a local optimization is applied to fit this TPS surface to the brain data using a robust least-median-of-squares estimator. Finally, MSS is modelled as a stack of the fitted TPSs, and the optimization is applied again in order to smooth the final MSS. MSS is the output of our method. The efficiency of the proposed method is evaluated using both simulated and real MR images and is compared to the state of the art. Our studies show that the proposed method discovers significant mid-sagittal surface with respect to the increased noise level and INU existence, in clinical images and pathological samples. This superiority is reasonable because of using FD and lacunarity being noise and INU independent and optimizing by TPS working locally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Liu SX (2009) Symmetry and asymmetry analysis and its implications to computer-aided diagnosis: a review of the literature. J Biomed Inform 42:1056–1064

    Article  Google Scholar 

  2. Jayasuriya SA, Liew AWC, Law NF (2013) Symmetry plane detection in brain image analysis: a survey. Curr Med Imaging Rev 9:230–248

    Article  Google Scholar 

  3. Kuijf HJ, Viergever MA, Vincken KL (2013) Automatic extraction of the curved midsagittal brain surface on MR images. In: Menze B, Langs G, Lu L, Montillo A, Tu Z, Criminisi A (eds) Medical computer vision. Recognition techniques and applications in medical imaging, vol 7766. Springer, Berlin, pp 225–232

    Chapter  Google Scholar 

  4. Jayasuriya SA, Liew AWC (2012) Symmetry plane detection in neuroimages based on intensity profile analysis. In: International symposium on information technology in medicine and education (ITME), pp 599–603

  5. Jayasuriya SA, Liew AWC, Law NF (2013) Brain symmetry plane detection based on fractal analysis. Comput Med Imaging Graph 37:568–580

    Article  Google Scholar 

  6. Free S, Sisodiya S, Cook M, Fish D, Shorvon S (1996) Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cereb Cortex 6:830–836

    Article  Google Scholar 

  7. Davarpanah SH, Liew AW-C (2016) Spatial possibilistic Fuzzy C-Mean segmentation algorithm integrated with brain mid-sagittal surface information. Int J Fuzzy Sys. doi:10.1007/s40815-016-0247-0

    Google Scholar 

  8. Liu X, Imielinska C, Laine A, Connolly ES, D’Ambrosio AL (2006) Symmetry identification using partial surface matching and tilt correction in 3D brain images. In: EMBS ‘06. 28th annual international conference of the IEEE engineering in medicine and biology society, pp 1056–1060

  9. Liu Y, Collins RT, Rothfus WE (2001) Robust midsagittal plane extraction from normal and pathological 3-D neuroradiology images. IEEE Trans Med Imaging 20:175–192

    Article  Google Scholar 

  10. Hu Q, Nowinski WL (2003) A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal. Neuroimage 20:2153–2165

    Article  Google Scholar 

  11. Thirion JP, Prima S, Subsol G, Roberts N (2000) Statistical analysis of normal and abnormal dissymmetry in volumetric medical images. Med Image Anal 4:111–121

    Article  Google Scholar 

  12. Volkau I, Prakash B, Ananthasubramaniam A, Gupta V, Aziz A, Nowinski WL (2006) Quantitative analysis of brain asymmetry by using the divergence measure: normal-pathological brain discrimination. Acad Radiol 13:752–758

    Article  Google Scholar 

  13. Lee S, Liu Y (2012) Curved glide-reflection symmetry detection. IEEE Trans Pattern Anal Mach Intell 34:266–278

    Article  Google Scholar 

  14. Ardekani BA, Kershaw J, Braun M, Kanuo I (1997) Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Trans Med Imaging 16:947–952

    Article  Google Scholar 

  15. Tuzikov AV, Colliot O, Bloch I (2003) Evaluation of the symmetry plane in 3D MR brain images. Pattern Recogn Lett 24:2219–2233

    Article  Google Scholar 

  16. Zhang R, Sato T, Arisawa H (2013) Symmetry recognition using mid-sagittal plane extraction and tilt correction in 3D head images. In: Proceedings of SICE annual conference (SICE), pp 761–766

  17. Minoshima S, Berger K, Lee K, Mintun M (1992) An automated method for rotational correction and centering of three-dimensional functional brain images. J Nucl Med 33:1579–1585

    Google Scholar 

  18. Yu S, Bhanu B, Bhanu S (2009) Automatic symmetry-integrated brain injury detection in MRI sequences. In: IEEE computer society conference on computer vision and pattern recognition workshops. CVPR workshops 2009, pp 79–86

  19. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MathSciNet  MATH  Google Scholar 

  20. Ray N, Saha BN, Graham Brown MR (2007) Locating Brain tumors from MR imagery using symmetry. In: ACSSC 2007. Conference record of the forty-first Asilomar conference on signals, systems and computers, pp 224–228

  21. Colliot O, Bloch I, Tuzikov AV (2002) Characterization of approximate plane symmetries for 3D fuzzy objects. In: Information processing and management of uncertainty, IPMU, France, pp 1749–1756

  22. Stegmann MB, Skoglund K, Ryberg C (2005) Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure. In: SPIE—international symposium on medical imaging San Diego, CA, pp 568–579

  23. Mandelbrot BB (1983) The fractal geometry of nature. Henry Holt and Company, San Francisco

    Google Scholar 

  24. Pentland AP (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell PAMI-6:661–674

    Article  Google Scholar 

  25. Tolle CR, McJunkin TR, Gorsich DJ (2008) An efficient implementation of the gliding box lacunarity algorithm. Phys D 237:306–315

    Article  MathSciNet  MATH  Google Scholar 

  26. Allain C, Cloitre M (1991) Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558

    Article  MathSciNet  Google Scholar 

  27. Kwan RKS, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18:1085–1097

    Article  Google Scholar 

  28. Jayasuriya SA, Liew AWC (2013) Symmetry incorporated fuzzy C-means method for image segmentation. In: IEEE international conference on fuzzy systems (FUZZ), pp 1–7

  29. Dryden IL, Mardia KV (1999) Statistical shape analysis. Wiley, New York

    MATH  Google Scholar 

  30. Zhang Z (1997) Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis Comput 15:59–76

    Article  Google Scholar 

  31. Liew AWC, Yan H (2003) An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imaging 22:1063–1075

    Article  Google Scholar 

  32. Cocosco CA, Kollokian V, Kwan RK-S, Pike GB, Evans AC (1997) BrainWeb: online interface to a 3D MRI simulated brain database. In: 3rd International conference on functional mapping of the human brain, Copenhagen, pp 425–425

  33. Kwan RS, Evans A, Pike GB (1996) An extensible MRI simulator for post-processing evaluation. In: Höhne K, Kikinis R (eds) Visualization in biomedical computing, vol 1131. Springer, Berlin, pp 135–140

    Chapter  Google Scholar 

  34. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ et al (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468

    Article  Google Scholar 

  35. IBSR. Center for Morphometric Analysis, Internet Brain Segmentation Repository (IBSR), Massachusetts General Hospital [Online]. Accessed 15 Feb 2014

  36. Johnson KA, The whole brain Atlas, AANLIB [online]. Accessed 15 Feb 2014

  37. Ruppert GCS, Teverovskiy L, Chen-Ping Y, Falcao AX, Yanxi L (2011) A new symmetry-based method for mid-sagittal plane extraction in neuroimages. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp 285–288

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Seyed Hashem Davarpanah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davarpanah, S.H., Liew, A.WC. Brain mid-sagittal surface extraction based on fractal analysis. Neural Comput & Applic 30, 153–162 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Mid-sagittal surface
  • 3-D brain MR image
  • Inter-hemispheric fissure
  • Fractal analysis
  • Thin-plate splines
  • Lacunarity