Skip to main content
Log in

Fractional-order PID controller tuning using continuous state transition algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Theoretical and applied studies of fractional-order PI\(^{\lambda }\)D\(^{\mu }\) (FOPID) controller in many scientific and engineering fields have shown many advantages compared to the classical PID control. However, the adjustment of FOPID controller becomes more complicated due to two additional parameters. In this study, the FOPID controller adjustment problem is transformed into a nonconvex optimization problem, and then a new metaheuristic method, named state transition algorithm (STA), is introduced to select the optimal FOPID controller parameters. In the meanwhile, the influence of objective criterion and sample size on the performance of FOPID controller design is analyzed. The dominance of the proposed method, especially for tuning FOPID controller parameters, is attested by several simulation cases and the comparisons of STA with other stochastic global optimization algorithms over the same problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rai P, Shekher V, Prakash O (2012) Determination of stabilizing parameter of fractional order PID controller using genetic algorithm. Int J Comput Eng Manag 15:24

    Google Scholar 

  2. Sabatier J, Agrawal O, Machado J (2007) Advances in fractional calculus. Springer, Netherlands

    Book  MATH  Google Scholar 

  3. Dadras S, Momeni H (2012) Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun Nonlinear Sci Numer Simul 17(1):367–377

    Article  MathSciNet  MATH  Google Scholar 

  4. Krishna B (2011) Studies on fractional order differentiators and integrators: a survey. Sig Process 91(3):386–426

    Article  MATH  Google Scholar 

  5. Podlubny I (1999) Fractional-order systems and PID controllers. IEEE Trans Autom Control 44(1):208–214

    Article  MATH  Google Scholar 

  6. Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng Appl Artif Intell 25(2):430–442

    Article  Google Scholar 

  7. Koksal E (2013) Fractional-order and active disturbance rejection control of nonlinear two-mass drive system. IEEE Trans Ind Electron 60(2):3806–3813

    Google Scholar 

  8. Wang D, Gao X (2012) H \(\infty\) design with fractional-order PD controllers. Automatica 48(5):974–977

    Article  MathSciNet  MATH  Google Scholar 

  9. Petráš I (2012) Tuning and implementation methods for fractional-order controllers. Fract Calc Appl Anal 15(2):282–303

    MathSciNet  MATH  Google Scholar 

  10. Ramezanian H, Balochian S, Zare A (2013) Design of optimal fractional-order PID controllers using particle swarm optimization algorithm for automatic voltage regulator (avr) system. J Control Autom Electr Syst 24(5):601–611

    Article  Google Scholar 

  11. Gao Q, Chen J, Wang L, Xu S, Hou Y (2013) Multiobjective optimization design of a fractional order PID controller for a gun control system. Sci World J 2013(1):907256–907256

    Google Scholar 

  12. Biswas A, Das S, Abraham A, Dasgupta S (2009) Design of fractional-order PID controllers with an improved differential evolution. Eng Appl Artif Intell 22(2):343–350

    Article  Google Scholar 

  13. Özbay H, Bonnet C, Fioravanti A (2012) PID controller design for fractional-order systems with time delays. Syst Control Lett 61(1):18–23

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee C, Chang F (2010) Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Syst Appl 37(12):8871–8878

    Article  Google Scholar 

  15. Padhee S, Gautam A, Singh Y, Kaur G (2011) A novel evolutionary tuning method for fractional order PID controller. Int J Soft Comput Eng 1(3):1–9

    Google Scholar 

  16. Zhou X, Yang C, Gui W (2012) State transition algorithm. J Ind Manag Optim 8(4):1039–1056

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou X, Gao DY, Yang C (2013) A comparative study of state transition algorithm with harmony search and artificial bee colony. Adv Intell Syst Comput 213:651–659

    Google Scholar 

  18. Zhou X, Yang C, Gui W (2014) Nonlinear system identification and control using state transition algorithm. Appl Math Comput 226:169–179

    MathSciNet  MATH  Google Scholar 

  19. Zhou X, Gao DY, Yang C, Gui W (2016) Discrete state transition algorithm for unconstrained integer optimization problems. Neurocomputing 173:864–874

    Article  Google Scholar 

  20. Zhou X, Gao DY, Simpson AR (2016) Optimal design of water distribution networks by a discrete state transition algorithm. Eng Optim 48(4):603–628

    Article  Google Scholar 

  21. Wang Y, He H, Zhou X, Yang C, Xie Y (2016) Optimization of both operating costs and energy efficiency in the alumina evaporation process by a multi-objective state transition algorithm. Can J Chem Eng 94(1):53–65

    Article  Google Scholar 

  22. Wang G, Yang C, Zhu H, Li Y, Peng X, Gui W (2016) State-transition-algorithm-based resolution for overlapping linear sweep voltammetric peaks with high signal ratio. Chemometr Intell Lab Syst 151:61–70

    Article  Google Scholar 

  23. Monje C, Chen Y, Vinagre B, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Qin A, Huang V, Suganthan P (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  25. Liang J, Qin A, Suganthan P, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  26. Barbosa RS, Machado JT, Ferreira IM (2004) Tuning of PID controllers based on bodes ideal transfer function. Nonlinear Dyn 38:305–321

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Authors thank the National Natural Science Foundation of China (Grant Nos. 61503416, 61533020, 61533021, 61590921) and Key Exploration Project (Grant No. 7131253) for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhou.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yang, C., Zhou, X. et al. Fractional-order PID controller tuning using continuous state transition algorithm. Neural Comput & Applic 29, 795–804 (2018). https://doi.org/10.1007/s00521-016-2605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2605-0

Keywords

Navigation