Skip to main content
Log in

The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An efficient numerical technique is formulated to solve two-dimensional time fractional cable equation. The fractional cable equation is an important mathematical model for describing anomalous diffusion processes in biological systems. The proposed computational technique is based on the combination of time stepping method and meshless weak formulation. At the first step, some implicit difference schemes are used to discrete the appearing integer and fractional time derivatives. Then, local radial point interpolation method (LRPI) is extended and used to solve the semi-discretized problem. The main aim of the paper is to show that the LRPI method is a powerful alternative computational technique to solve complicated fractional problems with high accuracy and low complexity. The performance and accuracy of the method are studied and verified through numerical experiments. Moreover, the convergence rate of the temporal discretization scheme is investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  2. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  3. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  4. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial CollegePress, London

    Book  MATH  Google Scholar 

  5. Ortigueira MD (2011) Fractional calculus for scientists and engineers. Springer, Netherlands

    Book  MATH  Google Scholar 

  6. Das S, Pan I (2012) Fractional order signal processing: introductory concepts and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Vladimir V (2013) Fractional derivatives for physicists and engineers. Springer, Berlin

    MATH  Google Scholar 

  8. Magin RL (2006) Fractional calculus in bioengineering. Begell House, Redding

    Google Scholar 

  9. Guo B, Pu X, Huang F (2015) Fractional partial differential equations and their numerical solutions. World Scientific Publishing Co, Beijing

    Book  MATH  Google Scholar 

  10. Kumar S, Kumar A, Baleneu D (2016) Two analytical method for time-fractional nonlinear coupled Boussinesq–Burger equations arises in propagation of shallow water waves. Nonlinear Dyn 1:1–17

    MathSciNet  Google Scholar 

  11. Kumar S, Kumar D, Singh J (2016) Fractional modelling arising in unidirectional propagation of long waves in dispersive media. Adv Nonlinear Anal. doi:10.1515/anona-0033

    MathSciNet  MATH  Google Scholar 

  12. Kumar S, Yao JJ, Kumar A (2015) A fractional model to describing the Brownian motion of particles and its analytical solution. Adv Mech Eng 7(12):1–11

    Google Scholar 

  13. Yin XB, Kumar S, Kumar D (2015) A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng 7(12):1–8

    Article  Google Scholar 

  14. Khan Y, Fardi M, Sayevand K, Ghasemi M (2014) Solution of nonlinear fractional differential equations using an efficient approach. Neural Comput Appl 24(1):187–192

    Article  MATH  Google Scholar 

  15. Saha Ray S, Sahoo S (2015) A class of time-fractional-order continuous population models for interacting species with stability analysis. Neural Comput Appl 26(6):1495–1504

    Article  Google Scholar 

  16. Abbasbandy S (2007) An approximation solution of a nonlinear equation with Riemann–Liouville’s fractional derivatives by He’s variational iteration method. J Comput Appl Math 207(1):53–58

    Article  MathSciNet  MATH  Google Scholar 

  17. Jafarian A, Mokhtarpour M, Baleanu D (2016) Artificial neural network approach for a class of fractional ordinary differential equation. Neural Comput Appl. doi:10.1007/s00521-015-2104-8

    Google Scholar 

  18. Keener J, Sneyd J (1991) Mathematical physiology. Springer, Berlin

    MATH  Google Scholar 

  19. Henry BI, Langlands TAM (2008) Fractional cable models for spiny neuronal dendrites. Phys Rev Lett 100(12):128103

    Article  Google Scholar 

  20. Langlands TAM, Henry BI, Wearne SL (2009) Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J Math Biol 59:761–808

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu B, Jiang XY (2015) Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J Sci Comput 68(1):252–272

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu F, Yang Q, Turner I (2011) Two new implicit numerical methods for the fractional cable equation. J Comput Nonlinear Dyn 6(1):011009

    Article  Google Scholar 

  23. Quintana-Murillo J, Yuste SB (2011) An explicit numerical method for the fractional cable equation. Int J Differ Equ. Article ID 231920

  24. Hu XL, Zhang LM (2012) Implicit compact difference schemes for the fractional cable equation. Appl Math Model 36:4027–4043

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin YM, Li XJ, Xu CJ (2011) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80:1369–1396

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang HX, Yang XH, Han XL (2014) Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation. Comput Math Appl 68:1710–1722

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang Y, Liu Y, Li H, Wang J (2016) Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation. Eur Phys J Plus 131:61

    Article  Google Scholar 

  28. Bhrawy AH, Zaky MA (2015) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80:101–116

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen CM, Liu F, Burrage K (2011) Numerical analysis for a variable-order nonlinear cable equation. J Comput Appl Math 236:209–224

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  31. Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, Uchaikin

    Book  MATH  Google Scholar 

  32. Kansa EJ (1990) Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics I, surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  33. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  34. Ling L, Opfer R, Schaback R (2006) Results on meshless collocation techniques. Eng Anal Bound Elem 30(4):247–253

    Article  MATH  Google Scholar 

  35. Abbasbandy S, Roohani Ghehsareh H, Hashim I (2012) Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. Eng Anal Bound Elem 36(12):1811–1818

    Article  MathSciNet  MATH  Google Scholar 

  36. Abbasbandy S, Roohani Ghehsareh H, Hashim I (2013) A meshfree method for the solution of two-dimensional cubic nonlinear Schrodinger equation. Eng Anal Bound Elem 37:885–898

    Article  MathSciNet  MATH  Google Scholar 

  37. Abbasbandy S, Roohani Ghehsareh H, Hashim I, Alsaedi AA (2014) Comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. Eng Anal Bound Elem 47:10–20

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu G, Gu Y (2001) A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1):29–46

    Article  Google Scholar 

  39. Liu G, Yan L, Wang J, Gu Y (2002) Point interpolation method based on local residual formulation using radial basis functions. Struct Eng Mech 14:713–732

    Article  Google Scholar 

  40. Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702

    Article  MathSciNet  MATH  Google Scholar 

  41. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786

    Article  MathSciNet  MATH  Google Scholar 

  42. Abbasbandy S, Roohani Ghehsareh H, Alhuthali M, Alsulami HH (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model. Eng Anal Bound Elem 39:121–128

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen W, Fu ZJ, Chen SC (2014) Recent advances in radial basis function collocation methods. Springer, Heidelberg

    Book  MATH  Google Scholar 

  44. Hosseini VR, Chen W, Avazzadeh Z (2014) Numerical solution of fractional telegraph equation by using radial basis functions. Eng Anal Bound Elem 38:31–39

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu Q, Gu Y, Zhuang P, Liu F, Nie Y (2011) An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech 48:1–12

    Article  MathSciNet  MATH  Google Scholar 

  46. Wen C, Linjuan Y, Hongguang S (2010) Fractional diffusion equations by the Kansa method. Comput Math Appl 59:1614–1620

    Article  MathSciNet  MATH  Google Scholar 

  47. Abbaszadeh M, Mohebbi A, Dehghan M (2014) Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng Anal Bound Elem 38:72–82

    Article  MathSciNet  MATH  Google Scholar 

  48. Dehghan M, Abbaszadeh M, Mohebbi A (2015) An implicit RBF meshless approach for solving the time fractional non linear sine-Gordon and Klein–Gordon equations. Eng Anal Bound Elem 50:412–434

    Article  MathSciNet  Google Scholar 

  49. Roohani Ghehsareh H, Heydari Bateni S, Zaghian A (2015) A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng Anal Bound Elem 61:52–60

    Article  MathSciNet  Google Scholar 

  50. Fu ZJ, Chen W, Yang HT (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66

    Article  MathSciNet  MATH  Google Scholar 

  51. Pang G, Chen W, Fu Z (2015) Space-fractional advection-dispersion equations by the Kansa method. J Comput Phys 293:280–296

    Article  MathSciNet  MATH  Google Scholar 

  52. Fu ZJ, Chen W, Ling L (2015) Method of approximate particular solutions for constant and variable-order fractional diffusion models. Eng Anal Bound Elem 57:37–46

    Article  MathSciNet  Google Scholar 

  53. Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math Meth Appl Sci 39(7):1820–1835

    Article  MathSciNet  MATH  Google Scholar 

  54. Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(2):1–21

    Article  Google Scholar 

  55. Aslefallah M, Shivanian E (2015) Nonlinear fractional integro-differential reaction–diffusion equation via radial basis functions. Eur Phys J Plus 130(3):1–9

    Article  Google Scholar 

  56. Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    Article  MathSciNet  MATH  Google Scholar 

  57. Sun ZZ, Wu XN (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56:193–209

    Article  MathSciNet  MATH  Google Scholar 

  58. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  59. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput Model Simul Eng 3:187–196

    Google Scholar 

  60. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG)method : a simple and less costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3:11–51

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Roohani Ghehsareh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohani Ghehsareh, H., Zaghian, A. & Zabetzadeh, S.M. The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation. Neural Comput & Applic 29, 745–754 (2018). https://doi.org/10.1007/s00521-016-2595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2595-y

Keywords

Navigation