Neural Computing and Applications

, Volume 29, Issue 2, pp 435–445 | Cite as

Synthesis of linear antenna array using flower pollination algorithm

  • Urvinder Singh
  • Rohit Salgotra
Original Article


Linear antenna array (LAA) design is a classical electromagnetic problem. It has been extensively dealt by number of researchers in the past, and different optimization algorithms have been applied for the synthesis of LAA. This paper presents a relatively new optimization technique, namely flower pollination algorithm (FPA) for the design of LAA for reducing the maximum side lobe level (SLL) and null control. The desired antenna is achieved by controlling only amplitudes or positions of the array elements. FPA is a novel meta-heuristic optimization method based on the process of pollination of flowers. The effectiveness and capability of FPA have been proved by taking difficult instances of antenna array design with single and multiple objectives. It is found that FPA is able to provide SLL reduction and steering the nulls in the undesired interference directions. Numerical results of FPA are also compared with the available results in the literature of state-of-the-art algorithms like genetic algorithm, particle swarm optimization, cuckoo search, tabu search, biogeography based optimization (BBO) and others which also proves the better performance of the proposed method. Moreover, FPA is more consistent in giving optimum results as compared to BBO method reported recently in the literature.


Antenna Linear antenna array Optimization Flower pollination algorithm Evolutionary computing 


  1. 1.
    Balanis C (1997) Antenna theory-analysis and design, 2nd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Merad L, Bendimerad F, Meriah S (2008) Design of linear antenna arrays for side lobe reduction using the tabu search method. Int Arab J Inform Technol 5(3):219–222Google Scholar
  3. 3.
    Khodier MM, Christodoulou CG (2005) Linear array geometry synthesis with minimum side lobe level and null control using particle swarm optimization. IEEE Trans Antennas Propag 53(8):2674–2679CrossRefGoogle Scholar
  4. 4.
    Khodier M, Al-Aqeel M (2009) Linear and circular array optimization: a study using particle swarm intelligence. PIER B 15:347–373CrossRefGoogle Scholar
  5. 5.
    Recioui A (2011) Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization. J Optim Theory Appl 153(2):497–512MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rattan M, Patterh MS, Sohi BS (2007) Synthesis of aperiodic liner antenna arrays using genetic algorithm. In: 19th international conference on applied electromagnetics and communications, ICECom—2007, pp 1–4Google Scholar
  7. 7.
    Cengiz Y, Tokat H (2008) Linear antenna array design with use of genetic, memetic and tabu search optimization algorithms. Prog Electromagn Res C 1:63–72CrossRefGoogle Scholar
  8. 8.
    Lin C, Qing A, Feng Q (2010) Synthesis of unequally spaced antenna arrays by using differential evolution. IEEE Trans Antennas Propag 58(8):2553–2561CrossRefGoogle Scholar
  9. 9.
    Dib N, Goudos S, Muhsen H (2010) Application of Taguchi’s optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays. PIER 102:159–180CrossRefGoogle Scholar
  10. 10.
    Singh U, Kumar H, Kamal TS (2010) Linear array synthesis using biogeography based optimization. PIER M 11:25–36CrossRefGoogle Scholar
  11. 11.
    Sharaqa A, Dib N (2013) Design of linear and elliptical antenna arrays using biogeography based optimization. Arab J Sci Eng 39(4):2929–2939CrossRefGoogle Scholar
  12. 12.
    Singh U (2013) Simulation and optimization of antennas using stochastic methods. Ph.D. Dissertation, Punjab Technical University, Jalandhar, IndiaGoogle Scholar
  13. 13.
    Rajo-Iglesias E, Quevedo-Teruel O (2007) Linear array synthesis using an ant colony optimization based algorithm. IEEE Antennas Propag Mag 49:70–79CrossRefGoogle Scholar
  14. 14.
    Pal S, Qu B-Y, Das S, Suganthan PN (2010) Optimal synthesis of linear antenna arrays with multi-objective differential evolution. PIER B 21:87–111Google Scholar
  15. 15.
    Goudos SK, Moysiadou V, Samaras T, Siakavara K, Sahalos JN (2010) Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with side lobe level suppression and null control. IEEE Antennas Wirel Propag Lett 9:125–129CrossRefGoogle Scholar
  16. 16.
    Chowdhury A, Giri R, Ghosh A, Das S, Abraham A, Snasel V (2010) Linear antenna array synthesis using fitness adaptive differential evolution algorithm. In: Proceedings of the international conference on evolutionary computation. IEEE Press Barcelona, Spain, pp 3137–3144Google Scholar
  17. 17.
    Guney K, Onay M (2011) Optimal synthesis of linear antenna arrays using a harmony search algorithm. Expert Syst Appl 38(12):15455–15462CrossRefGoogle Scholar
  18. 18.
    Singh U, Rattan M (2014) Design of linear and circular antenna arrays using cuckoo optimization algorithm. PIER C 46:1–11CrossRefGoogle Scholar
  19. 19.
    Khodier M (2013) Optimisation of antenna arrays using the cuckoo search algorithm. IET Microw Antennas Propag 7(6):458–464CrossRefGoogle Scholar
  20. 20.
    Guney K, Durmus A (2015) Pattern nulling of linear antenna arrays using backtracking search optimization algorithm. Int J Antennas Propag. doi: 10.1155/2015/713080 Google Scholar
  21. 21.
    Babayigit B, Akdagli A, Guney K (2006) A clonal selection algorithm for null synthesizing of linear antenna arrays by amplitude control. J Electromagn Waves Appl 20(8):1007–1020CrossRefzbMATHGoogle Scholar
  22. 22.
    Guney K, Babayigit B (2008) Amplitude-only pattern nulling of linear antenna arrays with the use of an immune algorithm. Int J RF Microw Comput Aided Eng 18(5):397–409CrossRefGoogle Scholar
  23. 23.
    Guney K, Babayigit B, Akdagli A (2007) Position only pattern nulling of linear antenna array by using a clonal selection algorithm (CLONALG). Electr Eng 90(2):147–153CrossRefGoogle Scholar
  24. 24.
    Yang XS (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, pp 240–249Google Scholar
  25. 25.
    Chakravarthy Vedula VSSS, Chowdary Paladuga SR, Rao Prithvi M (2015) Synthesis of circular array antenna for sidelobe level and aperture size control using flower pollination algorithm. Int J Antennas Propag. doi: 10.1155/2015/819712 Google Scholar
  26. 26.
    Sharawi M, Emary E, Saroit IA, El-Mahdy H (2014) Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. Int J Soft Comput Eng 4(3):54–59Google Scholar
  27. 27.
    Alam D, Yousri D, Eteiba M (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101:410–422CrossRefGoogle Scholar
  28. 28.
    Abdelaziz A, Ali E, Abd Elazim S (2016) Flower pollination algorithm to solve combined economic and emission dispatch problems. Eng Sci Technol Int J 19(2):980–990CrossRefGoogle Scholar
  29. 29.
    Bekdaş G, Nigdeli S, Yang X (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37:322–331CrossRefGoogle Scholar
  30. 30.
    Oily Fossils provide clues to the evolution of flowers, Science Daily. (2001).
  31. 31.
    Walker M (2009) How flowers conquered the world. BBC Earth News.
  32. 32.
    Glover B (2007) Understanding flowers and flowering: an integrated appraoch. Oxford University Press, OxfordCrossRefGoogle Scholar
  33. 33.
    Waser N (1986) Flower constancy: definition, cause, and measurement. Am Nat 127(5):593CrossRefGoogle Scholar
  34. 34.
    Pavlyukevich I (2007) Levy flights, non-local search and simulated annealing. J Comput Phys 226:1830–1844MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  1. 1.Thapar UniversityPatialaIndia
  2. 2.Chandigarh UniversityMohaliIndia

Personalised recommendations