Neural Computing and Applications

, Volume 28, Issue 5, pp 867–879 | Cite as

Object tracking via Dirichlet process-based appearance models

Computational Intelligence for Vision and Robotics

Abstract

Object tracking is the process of locating objects of interest in video frames. Challenges still exist in handling appearance changes in object tracking for robotic vision. In this paper, we propose a novel Dirichlet process-based appearance model (DPAM) for tracking. By explicitly introducing a new model variable into the traditional Dirichlet process, we model the negative and positive target instances as the combination of multiple appearance models. Within each model, target instances are dynamically clustered based on their visual similarity. DPAM provides an infinite nonparametric mixture of distributions that can grow automatically with the complexity of the appearance data. In addition, prior off-line training or specifying the number of mixture components (clusters or parameters) is not required. We build a tracking system in which DPAM is applied to cluster negative and positive target samples and detect the new target location. Our experimental results on real-world videos show that our system achieves superior performance when compared with several state-of-the-art trackers.

Keywords

Computer vision Object tracking Dirichlet process Appearance model 

References

  1. 1.
    Isard M, MacCormick J (2001) Bramble: a bayesian multiple-blob tracker. In: IEEE international conference on computer vision, pp 34–41Google Scholar
  2. 2.
    Birchfield S (1998) Elliptical head tracking using intensity gradients and color histograms. In: IEEE international conference on computer vision and pattern recognition, pp 232–237Google Scholar
  3. 3.
    Lepetit V, Fua P (2006) Keypoint recognition using randomized trees. IEEE Trans Pattern Anal Mach Intell 28:1465–1479CrossRefGoogle Scholar
  4. 4.
    Branson K, Belongie S (2005) Tracking multiple mouse contours (without too many samples). In: IEEE international conference on computer vision and pattern recognition, pp 1039–1046Google Scholar
  5. 5.
    Yu G, Hu Z, Lu H, Li W (2011) Robust object tracking with occlusion handle. Neural Comput Appl 20:1027–1034CrossRefGoogle Scholar
  6. 6.
    Wang N, Wang J, Yeung D-Y (2013) Online robust non-negative dictionary learning for visual tracking. In: IEEE international conference on computer vision, pp 657–664Google Scholar
  7. 7.
    Chen D, Yuan Z, Wu Y, Zhang G, Zheng N (2013) Constructing adaptive complex cells for robust visual tracking. In: IEEE international conference on computer vision, pp 1113–1120Google Scholar
  8. 8.
    Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision, pp 234–247Google Scholar
  9. 9.
    Wang X, Hua G, Han T (2010) Discriminative tracking by metric learning. In: European conference on computer vision, pp 200–214Google Scholar
  10. 10.
    Li A, Tang F, Guo Y, Tao H (2010) Discriminative nonorthogonal binary subspace tracking. In: European conference on computer vision, pp 258–271Google Scholar
  11. 11.
    Lefort R, Fablet R, Boucher J (2010) Weakly supervised classification of objects in images using soft random forests. In: European conference on computer vision, pp 185–198Google Scholar
  12. 12.
    Liu R, Cheng J, Lu H (2009) A robust boosting tracker with minimum error bound in a co-training framework. In: IEEE international conference on computer vision, pp 1459–1466Google Scholar
  13. 13.
    Santner J, Leistner C, Saffari A, Pock T, Bischof H (2010) Prost: parallel robust online simple tracking. In: IEEE international conference on computer vision and pattern recognition, pp 723–730Google Scholar
  14. 14.
    Lu H, Zhou Q, Wang D, Xiang R (2011) A co-training framework for visual tracking with multiple instance learning. In: IEEE international conference on automatic face & gesture recognition and workshops, pp 539–544Google Scholar
  15. 15.
    Dinh T, Medioni G (2011) Co-training framework of generative and discriminative trackers with partial occlusion handling. In: IEEE workshop on applications of computer vision, pp 642–649Google Scholar
  16. 16.
    Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26:1064–1072CrossRefGoogle Scholar
  17. 17.
    Lepetit V, Lagger P, Fua P (2005) Randomized trees for real-time keypoint recognition. In: IEEE international conference on computer vision and pattern recognition, pp 775–781Google Scholar
  18. 18.
    Lim J, Ross D, Lin R, Yang M (2004) Incremental learning for visual tracking. In: Advances in neural information processing systems, pp 793–800Google Scholar
  19. 19.
    Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29:261–271CrossRefGoogle Scholar
  20. 20.
    Grabner H, Bischof H (2006) On-line boosting and vision. In: IEEE international conference on computer vision and pattern recognition, pp 260–267Google Scholar
  21. 21.
    Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. In: IEEE international conference on computer vision and pattern recognition, pp 49–56Google Scholar
  22. 22.
    Babenko B, Yang M, Belongie S (2009) Visual tracking with online multiple instance learning. In: IEEE conference on computer vision and pattern recognition, pp 983–990Google Scholar
  23. 23.
    Williams O, Blake A, Cipolla R (2005) Sparse bayesian learning for efficient visual tracking. IEEE Trans Pattern Anal Mach Intell 27:1292–1304CrossRefGoogle Scholar
  24. 24.
    Aeschliman C, Park J, Kak A (2010) A probabilistic framework for joint segmentation and tracking. In: IEEE international conference on computer vision and pattern recognition, pp 1371–1378Google Scholar
  25. 25.
    Collins R, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27:1631–1643CrossRefGoogle Scholar
  26. 26.
    Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25:564–577CrossRefGoogle Scholar
  27. 27.
    Mei X, Ling H (2009) Robust visual tracking using l 1 minimization. In: IEEE international conference on computer vision, pp 1436–1443Google Scholar
  28. 28.
    Hager G, Belhumeur P (1998) Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intell 20:1025–1039CrossRefGoogle Scholar
  29. 29.
    Black M, Jepson A (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26:63–84CrossRefGoogle Scholar
  30. 30.
    Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: IEEE international conference on computer vision and pattern recognition, pp 142–149Google Scholar
  31. 31.
    Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE international conference on computer vision and pattern recognition, pp 798–805Google Scholar
  32. 32.
    Jepson A, Fleet D, El-Maraghi T (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25:1296–1311CrossRefGoogle Scholar
  33. 33.
    Matthews L, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 6:810–815CrossRefGoogle Scholar
  34. 34.
    Ross D, Lim J, Lin R, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77:125–141CrossRefGoogle Scholar
  35. 35.
    Zhou H, Yuan Y, Shi C (2009) Object tracking using sift features and mean shift. Comput Vis Image Underst 113:345–352CrossRefGoogle Scholar
  36. 36.
    Godec M, Roth P, Bischof H (2013) Hough-based tracking of non-rigid objects. Comput Vis Image Underst 117:1245–1256CrossRefGoogle Scholar
  37. 37.
    He S, Yang Q, Lau R, Wang J, Yang M (2013) Visual tracking via locality sensitive histograms. In: IEEE international conference on computer vision and pattern recognition, pp 2427–2434Google Scholar
  38. 38.
    Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: IEEE international conference on computer vision and pattern recognition, pp 1910–1917Google Scholar
  39. 39.
    Yu T, Dinh TB, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers. In: European conference on computer vision, pp 678–691Google Scholar
  40. 40.
    Kwon J, Lee KM (2010) Visual tracking decomposition. In: IEEE international conference on computer vision and pattern recognition, pp 1269–1276Google Scholar
  41. 41.
    Kim T, Woodley T, Stenger B, Cipolla R (2010) Online multiple classifier boosting for object tracking. In: IEEE international conference on computer vision and pattern recognition, pp 1–6Google Scholar
  42. 42.
    Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: European conference on computer vision, pp 624–637Google Scholar
  43. 43.
    Han Z, Ye Q, Jiao J (2011) Combined feature evaluation for adaptive visual object tracking. Comput Vis Image Underst 115:69–80CrossRefGoogle Scholar
  44. 44.
    Cherian A, Morellas V, Papanikolopoulos N, Bedros S (2011) Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications. In: IEEE international conference on computer vision and pattern recognition, pp 3417–3424Google Scholar
  45. 45.
    Ferguson T (1973) A bayesian analysis of some nonparametric problems. Ann Stat 1:209–230MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Aldous D (1985) Exchangeability and related topics. École d’Été de Probabilités de Saint-Flour, pp 1–198Google Scholar
  47. 47.
    Ramisa A, Vasudevan S, Aldavert D, Toledo R, de Mantaras RL (2009) Evaluation of the sift object recognition method in mobile robots. In: International conference of the catalan association for artificial intelligence, pp 56–73Google Scholar
  48. 48.
    Yu S-I, Yang Y, Hauptmann A (2013) Harry potter’s marauder’s map: localizing and tracking multiple persons-of-interest by nonnegative discretization. In: IEEE conference on computer vision and pattern recognition, pp 3714–3720Google Scholar
  49. 49.
    Lee D-Y, Sim J-Y, Kim C-S (2014) Visual tracking using pertinent patch selection and masking. In: IEEE conference on computer vision and pattern recognition, pp 3486–3493Google Scholar
  50. 50.
    Jain YK, Yadav R (2014) Content-based image retrieval approach using three features color, texture and shape. Int J Comput Appl 97(17):1–8Google Scholar
  51. 51.
    Nummiaro K, Koller-Meier E, Van Gool L (2003) Color features for tracking non-rigid objects. ACTA Autom Sin 29(3):345–355Google Scholar
  52. 52.
    Wang J, Yagi Y (2006) Integrating shape and color features for adaptive real-time object tracking. In: IEEE international conference on robotics and biomimetics, pp 1–6Google Scholar
  53. 53.
    Ogul B, Temizel A (2013) Person re-identification by combining features in a learning based framework. In: International conference on imaging for crime detection and prevention, pp 1–5Google Scholar
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
    Plungpongpun K, Naik D (2008) Multivariate analysis of variance using a kotz type distribution. Proc World Congr Eng 2:2–4Google Scholar
  59. 59.
    Fang K, Kotz S, Ng K (1998) Symmetric multivariate and related distributions. Chapman & Hall, LondonMATHGoogle Scholar
  60. 60.
    Gómez E, Gomez-Viilegas M, Marin J (1998) A multivariate generalization of the power exponential family of distributions. Commun Stat Theory Methods 27(3):589–600MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Johnson ME (2013) Multivariate statistical simulation: a guide to selecting and generating continuous multivariate distributions. Wiley, HobokenGoogle Scholar
  62. 62.
    Naik DN, Plungpongpun K (2006) A kotz-type distribution for multivariate statistical inference. In: Advances in distribution theory, order statistics, and inference, pp 111–124Google Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceWayne State UniversityDetroitUSA

Personalised recommendations