Skip to main content

Advertisement

Log in

Online semi-supervised multi-channel time series classifier based on growing neural gas

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Challenges in time series classification has attracted attention in the past decade. Although large amounts of labeled data are assumed to be available, in reality, labeled data might be scarce to find in many domains. In this paper, we propose an online semi-supervised multi-channel classifier for time series based on growing neural gas (GNG) learning scheme. The method is able to handle multi-channel time series with variation in dimensions and it introduces a label prediction strategy to minimize misclassification. It measures the similarity of input instance and learned templates using weighted multi-channel dynamic time warping technique and learns the topology of input data space specified for each class using the GNG learning algorithm. Comprehensive evaluation is conducted using various datasets, such as gesture recognition, human activity recognition, and human daily-life activity recognition. Experimental results demonstrate good classification results, with indication that the proposed approach requires only a handful of labeled instances to construct an accurate classification model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee S, Kwon D, Lee S (2004) Minimum distance queries for time series data. J Syst Softw 69(1):105–113

    Article  Google Scholar 

  2. Montgomery DC, Jennings CL, Kulahci M (2015) Introduction to time series analysis and forecasting. Wiley, New York

    MATH  Google Scholar 

  3. Yang K, Shahabi C (2004) A pca-based similarity measure for multivariate time series. In: Proceedings of the 2nd ACM international workshop on Multimedia databases. ACM, pp 65–74

  4. Cohen W (2000) Efficient pruning methods for separate-andconquer rule learning systems. In: Proceedings of the thirteenth international joint conference on artificial intelligence. pp 188–194

  5. Chen L, Kamel MS (2005) Design of multiple classifier systems for time series data. In: Oza NC, Polikar R, Kittler J, Roli F (eds) Multiple classifier systems: proceedings of the 6th international workshop, MCS 2005, Seaside, CA, USA, 13-15 June 2005. Springer, Berlin, Heidelberg, pp 216–225. doi:10.1007/11494683_22

  6. Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowle Discov 7(4):349–371

    Article  MathSciNet  Google Scholar 

  7. Fu T-C (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181

    Article  Google Scholar 

  8. Gaber MM, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review. ACM Sigmod Rec 34(2):18–26

    Article  MATH  Google Scholar 

  9. Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv (CSUR) 45(1):12

    Article  MATH  Google Scholar 

  10. Amini M-R, Usunier N (2015) Semi-supervised learning. In: Learning with partially labeled and interdependent data. Springer, Cham, pp 33–61. ISBN: 978-3-319-15726-9. doi:10.1007/978-3-319-15726-9_3

  11. Chapelle O, Schölkopf B, Zien A et al (2006) Semi-supervised learning. MIT Press, Cambridge. http://www.kyb.tuebingen.mpg.de/ssl-book

  12. Amiri SH, Jamzad M (2015) Automatic image annotation using semi-supervised generative modeling. Pattern Recognit 48(1):174–188

    Article  Google Scholar 

  13. Jiang Z, Zhang S, Zeng J (2013) A hybrid generative/discriminative method for semisupervised classification. Knowl Based Syst 37:137–145

    Article  Google Scholar 

  14. Bennett KP, Demiriz A (1999) Semi-supervised support vector machines. In: Kearns MJ, Solla SA, Cohn DA (eds) Advances in neural information processing systems 11. MIT Press, pp 368–374. http://papers.nips.cc/paper/1582-semi-supervised-support-vector-machines.pdf

  15. Esposito G, Martin M (2015) A randomized algorithm for the exact solution of transductive support vector machines. Appl Artif Intell 29(5):459–479

    Article  Google Scholar 

  16. Liu X, Guo T, He L, Yang X (2015) A low-rank approximation-based transductive support tensor machine for semisupervised classification. IEEE Trans Image Process 24(6):1825–1838

    Article  MathSciNet  Google Scholar 

  17. Blum A, Chawla S (2001) Learning from labeled and unlabeled data using graph mincuts. In: Brodley CE, Danyluk AP (eds) ICML '01: Proceedings of the eighteenth international conference on machine learning. Morgan Kaufmann Publishers Inc., San Francisco

  18. Belkin M, Matveeva I, Niyogi P (2004) Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor J, Singer Y (eds) Learning theory: Proceedings of the 17th annual conference on learning theory, COLT 2004, Banff, Canada, 1-4 July 2004, vol 3120. Springer, Berlin, pp 624–638. doi:10.1007/978-3-540-27819-1_43

  19. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  20. Li K, Zhang J, Xu H, Luo S, Li H (2013) A semi-supervised extreme learning machine method based on co-training. J Comput Inf Syst 9(1):207–214

    Google Scholar 

  21. Zhu X (2005) Semi-supervised learning literature survey. World 10:10

    Google Scholar 

  22. Gao Q, Huang Y, Gao X, Shen W, Zhang H (2015) A novel semi-supervised learning for face recognition. Neurocomputing 152:69–76

    Article  Google Scholar 

  23. Zhao Y, Ball R, Mosesian J, de Palma J-F, Lehman B (2015) Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays. IEEE Trans Power Electron 30(5):2848–2858

    Article  Google Scholar 

  24. Wei L, Keogh E (2006) Semi-supervised time series classification. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 748–753

  25. Ratanamahatana CA, Wanichsan D (2008) Stopping criterion selection for efficient semi-supervised time series classification. In: Lee R (ed) Software engineering, artificial intelligence, networking and parallel/distributed computing. Springer, Berlin, pp 1–14. doi:10.1007/978-3-540-70560-4_1

  26. Nguyen MN, Li X-L, Ng S-K (2011) Positive unlabeled leaning for time series classification. In: Walsh T (ed) Proceedings of the twenty-second international joint conference on artificial intelligence, vol 11. AAAI Press/International Joint Conferences on Artificial Intelligence, California, pp 1421–1426

  27. Marussy K, Buza K (2013) Success: a new approach for semi-supervised classification of time-series. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM (eds) Artificial intelligence and soft computing: proceedings of 12th international conference, ICAISC 2013, Zakopane, Poland, 9-13 June 2013, Part I. Springer, Berlin, Heidelberg, pp 437–447. doi:10.1007/978-3-642-38658-9_39

  28. Beyer O, Cimiano P (2012) Online semi-supervised growing neural gas. Int J Neural Syst 22(05):1250023

    Article  Google Scholar 

  29. Beyer O, Cimiano P (2013) Dyng: dynamic online growing neural gas for stream data. In: European symposium on artificial neural networks

  30. Fritzke B et al (1995) A growing neural gas network learns topologies. Adv Neural Inf Process Syst 7:625–632

    Google Scholar 

  31. Fritzke B (1994) Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Netw 7(9):1441–1460

    Article  Google Scholar 

  32. Martinetz T, Schulten K (1994) Topology representing networks. Neural Netw 7(3):507–522

    Article  Google Scholar 

  33. Ten Holt G, Reinders M, Hendriks E (2007) Multi-dimensional dynamic time warping for gesture recognition

  34. Müller M (2007) Dynamic time warping. Inf Ret Music Motion 69–84. doi:10.1007/978-3-540-74048-3_4

  35. Gou J, Du L, Zhang Y, Xiong T (2012) A new distance-weighted k-nearest neighbor classifier. J Inf Comput Sci 9:1429–1436

    Google Scholar 

  36. Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2012) Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo J, Hervás R, Rodríguez M (eds) Ambient assisted living and home care: Proceedings of 4th international workshop, IWAAL 2012, Vitoria-Gasteiz, Spain, 3-5 December 2012. Springer, Berlin, Heidelberg, pp 216–223. doi:10.1007/978-3-642-35395-6_30

  37. Weston J, Watkins C (1998) Multi-class support vector machines. Tech Rep, Citeseer

  38. Chavarriaga R, Sagha H, Calatroni A, Digumarti ST, Tröster G, Millán JDR, Roggen D (2013) The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recognit Lett 34(15):2033–2042

    Article  Google Scholar 

  39. Nguyen-Dinh L-V, Tröster G, Calatroni A (2014) Towards a unified system for multimodal activity spotting: challenges and a proposal. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing: adjunct publication, ACM, pp 807–816

Download references

Acknowledgments

The project is funded under the University of Malaya Grand Challenge Grant (GC003A-14HTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeevan Seera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nooralishahi, P., Seera, M. & Loo, C.K. Online semi-supervised multi-channel time series classifier based on growing neural gas. Neural Comput & Applic 28, 3491–3505 (2017). https://doi.org/10.1007/s00521-016-2247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2247-2

Keywords

Navigation