Skip to main content


Log in

Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript


In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Sebban M, Nock R (2002) A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recogn 35(4):835–846

    Article  MATH  Google Scholar 

  2. Jain A, Srivastava S, Singh S, Srivastava L (2013) Bacteria foraging optimization based bidding strategy under transmission congestion. IEEE Syst J. doi:10.1109/JSYST.2013.2258229

    Google Scholar 

  3. Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151(1–2):155–176

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee C, Lee GG (2006) Information gain and divergence-based feature selection for machine learning-based text categorization. Inf Process Manag 42(1):155–165

    Article  Google Scholar 

  5. Fernández-García N, Medina-Carnicer R, Carmona-Poyato A, Madrid-Cuevas F, Prieto-Villegas M (2004) Characterization of empirical discrepancy evaluation measures. Pattern Recogn Lett 25(1):35–47

    Article  Google Scholar 

  6. Sotoca JM, Pla F (2010) Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recogn 43(6):2068–2081

    Article  MATH  Google Scholar 

  7. Cover TM, Van Campenhout JM (1977) On the possible orderings in the measurement selection problem. IEEE Trans Syst Man Cybern 7(9):657–661

    Article  MathSciNet  MATH  Google Scholar 

  8. Haupt RL, Haupt SE (2004) Practical genetic algorithms, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  9. Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell 2(1):53–58

    Google Scholar 

  10. Firpi H, Goodman E (2004) Swarmed feature selection. In: Proceedings of international symposium on information theory, 2004. ISIT 2004, pp 112–118

  11. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications, SAGA 2009, vol 5792, pp 169–178

  12. Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 13(2):175–184

    Article  Google Scholar 

  13. Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13(2):947–958

    Article  Google Scholar 

  14. Fister I, Fister Jr I, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46

    Article  Google Scholar 

  15. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  16. Szymon l, Stawomir Z (2009) Firefly algorithm for continuous constrained optimization tasks. In: Computational collective intelligence. Semantic web, social networks and multiagent systems. Springer, pp 97–106

  17. Yang X-S, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  18. Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evol Comput 1(3):164–171

    Article  Google Scholar 

  19. Fister I Jr, Yang X-S, Fister I, Brest J (2012) Memetic firefly algorithm for combinatorial optimization. arXiv preprint arXiv:1204.5165

  20. Horng M-H (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39(1):1078–1091

    Article  Google Scholar 

  21. Fister I, Yang XS, Brest J, Fister I Jr (2013) Memetic self-adaptive firefly algorithm. In: Yang XS, Xiao RZC, Gandomi AH, Karamanoglu M (eds) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, Amsterdam, pp 73–102

  22. Gálvez A, Iglesias A (2014) New memetic self-adaptive firefly algorithm for continuous optimization. Int J Bio-Inspired Comput. arXiv:1204.5165

  23. Gálvez A, Iglesias A (2013) Firefly algorithm for polynomial Bézier surface parameterization. J Appl Math 2013:9, Article ID 237894. doi:10.1155/2013/237984

  24. Bacanin N, Tuba M (2014) Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. Sci World J 2014:16, Article ID 721521. doi:10.1155/2014/721521

  25. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  26. Coelho LDS, de Andrade Bernert DL, Mariani VC (2011) A chaotic firefly algorithm applied to reliability redundancy optimization. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 517–521

  27. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  28. Sayadi MK, Hafezalkotob A, Naini SGJ (2013) Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation. J Manuf Syst 32(1):78–84. doi:10.1016/j.jmsy.2012.06.004

    Article  Google Scholar 

  29. Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on systems, man, and cybernetics, 1997. Computational cybernetics and simulation, vol 5, pp 4104–4108

  30. Cover TM, Thomas JA (2006) Elements of information theory (Wiley series in telecommunications and signal processing). Wiley-Interscience, London

    Google Scholar 

  31. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550

    Article  Google Scholar 

  32. Kwak N, Choi CH (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1):143–159

    Article  Google Scholar 

  33. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  34. Tarasewich P, McMullen PR (2002) Swarm intelligence: power in numbers. Commun ACM 45(8):62–67

    Article  Google Scholar 

  35. Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: IEEE symposium on swarm intelligence, pp 120–127

  36. Omran M (2012) Standard particle swarm optimisation

  37. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 210–214

  38. Leu MS, Yeh MF (2012) Grey particle swarm optimization. Appl Soft Comput 12(9):2985–2996

    Article  Google Scholar 

  39. Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32(1):29–38

    Article  MATH  Google Scholar 

  40. Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526

    Article  Google Scholar 

  41. Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst J 8(3):910–920

    Article  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Heilongjiang Province of China (F201321), the Research and Development Program of Application Technology of Heilongjiang Province (GZ13A003), and the Scientific Research Fund of Heilongjiang Provincial Education Department (12541z007).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Long Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shan, L. & Wang, J. Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion. Neural Comput & Applic 28, 2795–2808 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: