Bhardwaj A, Tung NS, Shukla VK, Kamboj VK (2012) The important impacts of unit commitment constraints in power system planning. Int J Emerg Trends Eng Dev 5(2):301–306
Google Scholar
Zhu J (2009) Unit commitment. In: EI-Hawary ME, Hanzo L (eds) Optimization of power system operation, 1st edn, chapter 7. Wiley-IEEE Press, Hoboken, pp 251–293
Rajan CCA, Mohan MR, Manivannan K (2002) Neural based tabu search method for solving unit commitment problem. In: Proceedings of international conference on power system management and control (conference on publication no. 488), London, pp 180–185
Kumar V, Bath SK (2013) Single area unit commitment problem by modern soft computing techniques. Int J Enhanc Res Sci Technol Eng 2(3). ISSN: 2319-7463
Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. In: Proceedings of IEEE power engineering society general meeting, San Francisco, vol 3, pp 2752–2759
Xiong W, Li MJ, Cheng YL (2008) An improved particle swarm optimization algorithm for unit commitment. In: Proceedings of international conference on intelligent computation technology and automation (ICICTA-2008), vol 2, Changsha, Hunan, pp 21–25
Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum-inspired binary PSO for thermal unit commitment problems. In: Proceedings of 15th international conference on intelligent system applications to power systems, Curitiba, pp 1–6
Ge W (2010) Ramp rate constrained unit commitment by improved priority list and enhanced particle swarm optimization. In: Proceedings of 2010 international conference on computational intelligence and software engineering (CiSE 2010), Wuhan pp 1–8
Borghetti A, Frangioni A, Lacalandra F, Lodi A, Martello S, Nucci CA, Trebbi A (2001) Lagrangian relaxation and tabu search approaches for the unit commitment problem. In: Proceedings of IEEE power tech conference, Porto, vol 3, pp 1–7
Gaing ZL (2003) Discrete particle swarm optimization algorithm for unit commitment. In: Proceedings of IEEE power engineering society general meeting, Toronto vol 1, pp 418–424
Rajan CCA, Mohan MR, Manivannan K (2003) Neural based tabu search method for solving unit commitment problem. IEEE Proc Gener Transm Distrib 150(4):469–474
Article
Google Scholar
Gaing ZL (2003) Discrete particle swarm optimization algorithm for unit commitment. In: IEEE power engineering society general meeting, 2003, vol 1, pp 418–424, 13–17 July 2003
Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28:482–490
Article
Google Scholar
Lee TY, Chen CL (2007) Unit commitment with probabilistic reserve: an IPSO approach. Energy Convers Manag 48(2):486–493
Article
Google Scholar
Samudi C, Das GP, Ojha PC, Sreeni TS, Cherian S (2008) Hydro-thermal scheduling using particle swarm optimization. In: IEEE/PES transmission and distribution conference and exhibition, pp 1–5, April 2008
Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055
Article
Google Scholar
Mirjalili Seyedali, Lewis Andrew (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584
Article
Google Scholar
Dhillon JS, Kothari DP (2010) Power system optimization, 2nd edn. PHI, New Delhi
Google Scholar
Mirjalili S, Mirjalili v, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
Article
Google Scholar
Anita JM, Raglend IJ, Kothari DP (2012) Solution of unit commitment problem using shuffled frog leaping algorithm. IOSR J Electr Electron Eng (IOSRJEEE) 1(4):9–26. ISSN: 2278-1676
Anita JM, Raglend IJ, Kothari DP (2012) Solution of unit commitment problem using shuffled frog leaping algorithm. IOSR J Electr Electron Eng (IOSRJEEE) 1(4):9–26
Article
Google Scholar
Marifeld TT, Sheble GB (1996) Genetic based unit commitment algorithm. IEEE Trans Power Syst 11(3):1359–1370
Article
Google Scholar
Tokoro K, Masuda Y, Nishino H (2008) Solving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: SICE annual conference 2008, The University Electro-Communications, Japan, August 20–22, 2008
Tokoro KI, Masuda Y, Nishina H (2008) Solving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: SICE annual conference, Japan: The University Electro-Communications, pp 3474–3478
Damousis IG, Bakirtzis AG, Dokopoulos PS (2004) A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Trans Power Syst 19(2):1165–1172
Article
Google Scholar
Sheble GB et al (1997) Unit commitment by genetic algorithm with penalty method and a comparison of lagrangian search and genetic algorithm economic dispatch example. Int J Electr Power Energy Syst 9(1):45–55
Google Scholar
Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055
Article
Google Scholar
Ganguly D, Sarkar V, Pal J (2004) A new genetic approach for solving the unit commitment problem. In: International conference on power system technology-POWERCON 2004, Singapore, pp 542–547, 21–24 November, 2004
Grefensttete JJ (1986) Optimization of control parameters for genetic algorithm. IEEE Trans Syst Man Cybern 16:122–128
Article
Google Scholar
Lee S, Park H, Jeon M (2007) Binary particle swarm optimization with bit change mutation. IEICE Trans Fundam Electron Commun Comput Sci E-90A(10):2253–2256
Article
Google Scholar
Gaing Z-L (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195
Article
Google Scholar
Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: 2011 IEEE international conference on fuzzy systems, 27–30 June, 2011, Taipei
Eldin AS, El-sayed MAH, Youssef HKM (2008) A two-stage genetic based technique for the unit commitment optimization problem. In: 12th international middle east power system conference, MEPCO, Aswan, 2008, p 425e30
Victoire TAA, Jeyakumar AE (2004) Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr Power Syst Res 71(1):51–59
Article
Google Scholar
Simopoulos DN, Kavatza SD, Vournas CD (2009) Unit commitment by an enhanced simulated annealing algorithm. In: Power systems conference and exposition, 2006. PSCE ‘06. 2006 EEE PES October 29 2006-Nov. 1 2006, pp 193–201
Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92
Article
Google Scholar
Dimitris N, Simopoulos SD, Kavatza, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76
Article
Google Scholar
Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with lagrange relaxation. In: IEEE power engineering society general meeting. San Francisco, USA, pp 1522–1529