Abstract
In nature, the eastern North American monarch population is known for its southward migration during the late summer/autumn from the northern USA and southern Canada to Mexico, covering thousands of miles. By simplifying and idealizing the migration of monarch butterflies, a new kind of nature-inspired metaheuristic algorithm, called monarch butterfly optimization (MBO), a first of its kind, is proposed in this paper. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. southern Canada and the northern USA (Land 1) and Mexico (Land 2). Accordingly, the positions of the monarch butterflies are updated in two ways. Firstly, the offsprings are generated (position updating) by migration operator, which can be adjusted by the migration ratio. It is followed by tuning the positions for other butterflies by means of butterfly adjusting operator. In order to keep the population unchanged and minimize fitness evaluations, the sum of the newly generated butterflies in these two ways remains equal to the original population. In order to demonstrate the superior performance of the MBO algorithm, a comparative study with five other metaheuristic algorithms through thirty-eight benchmark problems is carried out. The results clearly exhibit the capability of the MBO method toward finding the enhanced function values on most of the benchmark problems with respect to the other five algorithms. Note that the source codes of the proposed MBO algorithm are publicly available at GitHub (https://github.com/ggw0122/Monarch-Butterfly-Optimization, C++/MATLAB) and MATLAB Central (http://www.mathworks.com/matlabcentral/fileexchange/50828-monarch-butterfly-optimization, MATLAB).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cui Z, Gao X (2012) Theory and applications of swarm intelligence. Neural Comput Appl 21(2):205–206
Cui Z, Fan S, Zeng J, Shi Z (2013) APOA with parabola model for directing orbits of chaotic systems. Int J Bio-Inspired Comput 5(1):67–72
Gao XZ, Wang X, Jokinen T, Ovaska SJ, Arkkio A, Zenger K (2012) A hybrid PBIL-based harmony search method. Neural Comput Appl 21(5):1071–1083. doi:10.1007/s00521-011-0675-6
Gao XZ, Ovaska SJ, Wang X, Chow MY (2007) A neural networks-based negative selection algorithm in fault diagnosis. Neural Comput Appl 17(1):91–98. doi:10.1007/s00521-007-0092-z
Fister Jr I, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv:1307.4186
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Paper presented at the proceeding of the IEEE international conference on neural networks, Perth, Australia, 27 November-1 December
Ram G, Mandal D, Kar R, Ghoshal SP (2014) Optimal design of non–uniform circular antenna arrays using PSO with wavelet mutation. Int J Bio-Inspired Comput 6(6):424–433
Mirjalili S, Wang G-G, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435. doi:10.1007/s00521-014-1629-6
Wang G-G, Gandomi AH, Alavi AH, Deb S (2015) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput Appl. doi:10.1007/s00521-015-1914-z
Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220. doi:10.1108/EC-10-2012-0232
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41. doi:10.1109/3477.484436
Krynicki K, Jaen J, Mocholí JA (2014) Ant colony optimisation for resource searching in dynamic peer-to-peer grids. Int J Bio-Inspired Comput 6(3):153–165. doi:10.1504/IJBIC.2014.062634
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. doi:10.1007/s10898-007-9149-x
Li X, Yin M (2012) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734. doi:10.1007/s00521-012-1285-7
Yang XS, Deb S Cuckoo search via Lévy flights. In: Abraham A, Carvalho A, Herrera F, Pai V (eds) Proceeding of world congress on nature & biologically inspired computing (NaBIC 2009), Coimbatore, December 2009. IEEE Publications, USA, pp 210–214
Ouaarab A, Ahiod B, Yang X-S (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669. doi:10.1007/s00521-013-1402-2
Yang X-S, Deb S (2013) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174. doi:10.1007/s00521-013-1367-1
Li X, Wang J, Yin M (2013) Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput Appl 24(6):1233–1247. doi:10.1007/s00521-013-1354-6
Wang G-G, Gandomi AH, Zhao X, Chu HCE (2014) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput. doi:10.1007/s00500-014-1502-7
Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, Frome
Mirjalili S, Mirjalili SM, Yang X-S (2013) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681. doi:10.1007/s00521-013-1525-5
Fister Jr I, Fong S, Brest J, Fister I Towards the self-adaptation in the bat algorithm. In: Proceedings of the 13th IASTED international conference on artificial intelligence and applications, 2014. doi:10.2316/P.2014.816-011
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. doi:10.1016/j.advengsoft.2013.12.007
Saremi S, Mirjalili SZ, Mirjalili SM (2014) Evolutionary population dynamics and grey wolf optimizer. Neural Comput Appl. doi:10.1007/s00521-014-1806-7
Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. doi:10.1016/j.advengsoft.2015.01.010
Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336. doi:10.1016/j.compstruc.2011.08.002
Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84. doi:10.1504/IJBIC.2010.032124
Wang G-G, Guo L, Duan H, Wang H (2014) A new improved firefly algorithm for global numerical optimization. J Comput Theor Nanos 11(2):477–485. doi:10.1166/jctn.2014.3383
Guo L, Wang G-G, Wang H, Wang D (2013) An effective hybrid firefly algorithm with harmony search for global numerical optimization. Sci World J 2013:1–10. doi:10.1155/2013/125625
Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: Tan Y, Shi Y, Coello CC (eds) Advances in swarm intelligence, vol 8794. Lecture notes in computer science. Springer, New York, pp 86-94. doi:10.1007/978-3-319-11857-4_10
Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simulat 17(12):4831–4845. doi:10.1016/j.cnsns.2012.05.010
Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd algorithm: krill herd with linear decreasing step. Appl Math Comput 234:356–367. doi:10.1016/j.amc.2014.01.146
Wang G-G, Gandomi AH, Alavi AH (2013) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6):962–978. doi:10.1108/K-11-2012-0108
Goldberg DE (1998) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York
Gao XZ, Ovaska SJ (2002) Genetic algorithm training of Elman neural network in motor fault detection. Neural Comput Appl 11(1):37–44. doi:10.1007/s005210200014
Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford
Zhao X, Gao X-S, Hu Z-C (2007) Evolutionary programming based on non-uniform mutation. Appl Math Comput 192(1):1–11. doi:10.1016/j.amc.2006.06.107
Hand D (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge
Beyer H, Schwefel H (2002) Natural computing. Kluwer Academic Publishers, Dordrecht
Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. doi:10.1023/A:1008202821328
Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 25(2):297–308. doi:10.1007/s00521-013-1485-9
Khatib W, Fleming P (1998) The stud GA: A mini revolution? In: Eiben A, Back T, Schoenauer M, Schwefel H (eds) Proceedings of the 5th international conference on parallel problem solving from nature, New York, 1998. Parallel problem solving from nature. Springer, London, pp 683–691
Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370. doi:10.1016/j.neucom.2013.08.031
Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239. doi:10.1016/j.ins.2011.07.026
Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713. doi:10.1109/TEVC.2008.919004
Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097. doi:10.1007/s00521-014-1597-x
Li X, Yin M (2013) Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans Nanobiosci 12(4):343–353. doi:10.1109/TNB.2013.2294716
Wang G-G, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9–10):2454–2462. doi:10.1016/j.apm.2013.10.052
Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2318–2328. doi:10.1166/jctn.2013.3207
Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877. doi:10.1007/s00521-013-1433-8
Garber SD (1998) The Urban Naturalist. Dover Publications, Mineola
Klots AB (1978) Field guide to the butterflies of North America, East of the great plains. Peterson Field Guides, Boston, USA
Breed GA, Severns PM, Edwards AM (2015) Apparent power-law distributions in animal movements can arise from intraspecific interactions. J R Soc Interface 12(103):20140927. doi:10.1098/rsif.2014.0927
Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(2):82–102
Yang X-S, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation. Elsevier, Waltham
Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871. doi:10.1007/s00521-012-1304-8
Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34. doi:10.1016/j.ins.2014.02.123
Acknowledgments
This work was supported by Research Fund for the Doctoral Program of Jiangsu Normal University (No. 13XLR041).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, GG., Deb, S. & Cui, Z. Monarch butterfly optimization. Neural Comput & Applic 31, 1995–2014 (2019). https://doi.org/10.1007/s00521-015-1923-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-015-1923-y