Skip to main content
Log in

Block-based selection random forest for texture classification using multi-fractal spectrum feature

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a block-based selection random forest (BBSRF) for texture classification task using multi-fractal spectrum (MFS) feature descriptor. The random feature selection method for node splitting in random forest may omit some features which would be informative and critical to represent the instances. The BBSRF ensures that each feature would be considered via the block-based selection strategy. In BBSRF, all features are divided into \(k\) blocks; next, we generate synthesis feature subset which is made up of all features in one block and \(m\) random features from the remaining \((k-1)\) blocks; finally, each node splitting of the random tree is operated on one synthesis feature subset. After all blocks have been searched, all features are re-divided into new \(k\) blocks. The above process works iteratively until the satisfactory result is obtained. Once the random trees have been built, a testing instance is classified by voting from them. We conducted the experiments on five texture benchmark datasets with the help of MFS feature. Experimental results demonstrate the excellent performance of the proposed method in comparison with state-of-the-art results on these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

  2. http://www.cfar.umd.edu/~fer/website-texture/texture.htm.

  3. http://www.nada.kth.se/cvap/databases/kth-tips/.

  4. http://aloi.science.uva.nl/public_alot/.

  5. http://people.csail.mit.edu/celiu/CVPR2010/FMD/.

  6. http://www1.cs.columbia.edu/CAVE/software/curet/html/download.html.

References

  1. Biau G (2012) Analysis of a random forests model. J Mach Learn Res 98888(1):1063–1095

    MathSciNet  MATH  Google Scholar 

  2. Booth A, Gerding E, McGroarty F (2014) Automated trading with performance weighted random forests and seasonality. Expert Syst Appl 41(8):3651–3661

    Article  Google Scholar 

  3. Bovik AC, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell 12(1):55–73

    Article  Google Scholar 

  4. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MathSciNet  MATH  Google Scholar 

  5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MathSciNet  MATH  Google Scholar 

  6. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  7. Clémençon S, Depecker M, Vayatis N (2013) Ranking forests. J Mach Learn Res 14(1):39–73

    MathSciNet  MATH  Google Scholar 

  8. Clémençon S, Vayatis N (2009) Tree-based ranking methods. IEEE Trans Inf Theory 55(9):4316–4336

    Article  MathSciNet  MATH  Google Scholar 

  9. Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 1:25–39

    Article  Google Scholar 

  10. de Freitas N et al (2014) Narrowing the gap: random forests in theory and in practice. J Mach Learn Res 32:665–673

    Google Scholar 

  11. Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157

    Article  Google Scholar 

  12. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap, vol 57. CRC Press, Boca Raton

    MATH  Google Scholar 

  13. Falconer KJ, Falconer K (1997) Techniques in fractal geometry, vol 16. Wiley, Chichester

    MATH  Google Scholar 

  14. Florindo JB, Bruno OM (2014) Fractal descriptors based on the probability dimension: a texture analysis and classification approach. Pattern Recognit Lett 42:107–114

    Article  Google Scholar 

  15. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42

    Article  MATH  Google Scholar 

  16. Gheyas IA, Smith LS (2010) Feature subset selection in large dimensionality domains. Pattern Recognit 43(1):5–13

    Article  MATH  Google Scholar 

  17. González E, Fernández A, Bianconi F (2014) General framework for rotation invariant texture classification through co-occurrence of patterns. J Math Imaging Vis 50(3):300–313

    Article  MATH  Google Scholar 

  18. Hapfelmeier A, Hothorn T, Ulm K, Strobl C (2014) A new variable importance measure for random forests with missing data. Stat Comput 24(1):21–34

    Article  MathSciNet  MATH  Google Scholar 

  19. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  20. Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009) The elements of statistical learning, vol 2. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Heeger DJ, Bergen JR (1995) Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. ACM, London, pp 229–238

  22. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  23. Huy NH, Frenzel S, Bandt C (2014) Two-step linear discriminant analysis for classification of eeg data. In: Spiliopoulou M, Schmidt-Thieme L, Janning R (eds) Data analysis, machine learning and knowledge discovery. Springer, Berlin, pp 51–59

    Chapter  Google Scholar 

  24. Jain S, Papadakis M, Upadhyay S, Azencott R (2012) Rigid-motion-invariant classification of 3-d textures. IEEE Trans Image Process 21(5):2449–2463

    Article  MathSciNet  Google Scholar 

  25. Janitza S, Strobl C, Boulesteix A-L (2013) An AUC-based permutation variable importance measure for random forests. BMC Bioinf 14(1):119

    Article  Google Scholar 

  26. Kulkarni VY, Sinha PK (2013) Random forest classifiers: a survey and future research directions. Int J Adv Comput 36(1):1144–1153

    Google Scholar 

  27. Li CR, Li JP, Gao DP, Fu B (2014) Rapid-transform based rotation invariant descriptor for texture classification under non-ideal conditions. Pattern Recognit 47(1):313–325

    Article  Google Scholar 

  28. Liu L, Fieguth P, Kuang GY, Zha, HB (2011) Sorted random projections for robust texture classification. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 391–398

  29. Liu L, Fieguth PW (2012) Texture classification from random features. IEEE Trans Pattern Anal Mach Intell 34(3):574–586

    Article  Google Scholar 

  30. Liu X, Song ML, Tao DC, Liu ZC, Zhang LM, Chen C, Bu JJ (2013) Semi-supervised node splitting for random forest construction. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 492–499

  31. Manfredi M, Vezzani R, Calderara S, Cucchiara R (2014) Detection of static groups and crowds gathered in open spaces by texture classification. Pattern Recognit Lett 44:39–48

    Article  Google Scholar 

  32. Martínez-Muñoz G, Suárez A (2010) Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognit 43(1):143–152

    Article  MATH  Google Scholar 

  33. Neville PG (2013) Controversy of variable importance in random forests. J Unified Stat Tech 1(1):15–20

    Google Scholar 

  34. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  35. Qi XB, Xiao R, Guo J, Zhang L (2012) Pairwise rotation invariant co-occurrence local binary pattern. In: Computer vision-ECCV 2012. Springer, Berlin, pp 158–171

  36. Quan YH, Xu Y, Sun YP, Luo Y (2013) Lacunarity analysis on image patterns for texture classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 160–167

  37. Robnik-Šikonja M (2004) Improving random forests. In: Machine learning: ECML 2004. Springer, Berlin, pp 359–370

  38. Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630

    Article  Google Scholar 

  39. Rutkowski L, Jaworski M, Pietruczuk L, Duda P (2014) The cart decision tree for mining data streams. Inf Sci 266:1–15

    Article  Google Scholar 

  40. Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105(3):222–245

    Article  MathSciNet  MATH  Google Scholar 

  41. Sim A, Tsagkrasoulis D, Montana G (2013) Random forests on distance matrices for imaging genetics studies. Stat Appl Genet Mol Biol 12(6):757–786

    MathSciNet  Google Scholar 

  42. Singh K, Guntuku SC, Thakur A, Hota C (2014) Big data analytics framework for peer-to-peer botnet detection using random forests. Inf Sci 278:488–497

    Article  Google Scholar 

  43. Taheri S, Yearwood J, Mammadov M, Seifollahi S (2014) Attribute weighted Naive Bayes classifier using a local optimization. Neural Comput Appl 24(5):995–1002

    Article  Google Scholar 

  44. Taneja S, Gupta C, Goyal K, Gureja D (2014) An enhanced k-nearest neighbor algorithm using information gain and clustering. In: 2014 Fourth international conference on Advanced Computing & Communication Technologies (ACCT). IEEE, pp 325–329

  45. Targhi AT, Geusebroek J-M, Zisserman A (2008) Texture classification with minimal training images. In: 19th international conference on pattern recognition, 2008. ICPR 2008. IEEE, pp 1–4

  46. Weszka JS, Rosenfeld A (1975) A comparative study of texture measures for terrain classification. NASA STI/Recon Technical Report N 76:269–285

  47. Williams JK (2014) Using random forests to diagnose aviation turbulence. Mach Learn 95(1):51–70

    Article  MathSciNet  Google Scholar 

  48. Woźniak M, Graña M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fus 16:3–17

    Article  Google Scholar 

  49. Xu BX, Huang JZ, Williams G, Wang Q, Ye YM (2012) Classifying very high-dimensional data with random forests built from small subspaces. Int J Data Warehous Min (IJDWM) 8(2):44–63

    Article  Google Scholar 

  50. Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100

    Article  Google Scholar 

  51. Xu Y, Yang X, Ling HB, Ji H (2010) A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 161–168

  52. Yang F, Lu WH, Luo LK, Li T (2012) Margin optimization based pruning for random forest. Neurocomputing 94:54–63

    Article  Google Scholar 

  53. Yang PY, Hwa Yang Y, B Zhou B, Y Zomaya A (2010) A review of ensemble methods in bioinformatics. Curr Bioinf 5(4):296–308

    Article  Google Scholar 

  54. Ye YM, Wu QY, Huang JZ, Ng MK, Li XT (2013) Stratified sampling for feature subspace selection in random forests for high dimensional data. Pattern Recognit 46(3):769–787

    Article  Google Scholar 

  55. Zhang L, Suganthan PN (2014) Random forests with ensemble of feature spaces. Pattern Recognit 47(10):3429–3437

    Article  Google Scholar 

  56. Zuñiga AG, Florindo JB, Bruno OM (2014) Gabor wavelets combined with volumetric fractal dimension applied to texture analysis. Pattern Recognit Lett 36:135–143

    Article  Google Scholar 

Download references

Acknowledgments

Yong Xu would like to thank the supports by National Nature Science Foundations of China (61273255 and 61070091), Engineering & Technology Research Center of Guangdong Province for Big Data Analysis and Processing ([2013]1589-1-11), Project of High Level Talents in Higher Institution of Guangdong Province (2013-2050205-47) and Guangdong Technological Innovation Project (2013KJCX0010). Qian Zhang would like to thank the support by Guizhou Province Science and Technology Project (QIAN KE HE J ZI[2014]2094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xu, Y. Block-based selection random forest for texture classification using multi-fractal spectrum feature. Neural Comput & Applic 27, 593–602 (2016). https://doi.org/10.1007/s00521-015-1880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1880-5

Keywords

Navigation