Skip to main content

Advertisement

Log in

Multi-Verse Optimizer: a nature-inspired algorithm for global optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel nature-inspired algorithm called Multi-Verse Optimizer (MVO). The main inspirations of this algorithm are based on three concepts in cosmology: white hole, black hole, and wormhole. The mathematical models of these three concepts are developed to perform exploration, exploitation, and local search, respectively. The MVO algorithm is first benchmarked on 19 challenging test problems. It is then applied to five real engineering problems to further confirm its performance. To validate the results, MVO is compared with four well-known algorithms: Grey Wolf Optimizer, Particle Swarm Optimization, Genetic Algorithm, and Gravitational Search Algorithm. The results prove that the proposed algorithm is able to provide very competitive results and outperforms the best algorithms in the literature on the majority of the test beds. The results of the real case studies also demonstrate the potential of MVO in solving real problems with unknown search spaces. Note that the source codes of the proposed MVO algorithm are publicly available at http://www.alimirjalili.com/MVO.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  2. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  3. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  4. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  5. Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34:975–986

    Article  MathSciNet  Google Scholar 

  6. Hoos HH, Stützle T (2004) Stochastic local search: foundations and applications. Elsevier, Amsterdam

    Google Scholar 

  7. Johnson DS, Papadimitriou CH, Yannakakis M (1988) How easy is local search? J Comput Syst Sci 37:79–100

    Article  MATH  MathSciNet  Google Scholar 

  8. Mitchell M, Holland JH, Forrest S (1993) When will a genetic algorithm outperform hill climbing? In: NIPS, pp 51–58

  9. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Article  Google Scholar 

  10. Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, US, pp 250–285

    Google Scholar 

  11. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471

    Article  MATH  MathSciNet  Google Scholar 

  12. Khoury J, Ovrut BA, Seiberg N, Steinhardt PJ, Turok N (2002) From big crunch to big bang. Phys Rev D 65:086007

    Article  Google Scholar 

  13. Tegmark M (2004) Parallel universes. In: Barrow JD, Davies PCW, Harper CL Jr (eds) Science and ultimate reality: Quantum theory, cosmology, and complexity. Cambridge University Press, pp 459–491

  14. Eardley DM (1974) Death of white holes in the early Universe. Phys Rev Lett 33:442

    Article  Google Scholar 

  15. Steinhardt PJ, Turok N (2002) A cyclic model of the universe. Science 296:1436–1439

    Article  MATH  MathSciNet  Google Scholar 

  16. Davies PC (1978) Thermodynamics of black holes. Rep Prog Phys 41:1313

    Article  Google Scholar 

  17. Morris MS, Thorne KS (1988) Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am J Phys 56:395–412

    Article  MATH  MathSciNet  Google Scholar 

  18. Guth AH (2007) Eternal inflation and its implications. J Phys A Math Theor 40:6811

    Article  MathSciNet  Google Scholar 

  19. Steinhardt PJ, Turok N (2005) The cyclic model simplified. New Astron Rev 49:43–57

    Article  Google Scholar 

  20. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  21. Digalakis J, Margaritis K (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506

    Article  MATH  MathSciNet  Google Scholar 

  22. Molga M, Smutnicki C (2005) Test functions for optimization needs. http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf

  23. Yang X-S (2010) Test problems in optimization. arXiv preprint: arXiv:1008.0549

  24. Liang J, Suganthan P, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005, pp 68–75

  25. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. In: KanGAL report, vol 2005

  26. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  27. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14

    Article  Google Scholar 

  28. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  29. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. doi:10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  30. van den Bergh F, Engelbrecht A (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971

    Article  MATH  Google Scholar 

  31. Carlos A, Coello C (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng Syst 17:319–346

    Article  Google Scholar 

  32. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29:2013–2015

    Article  Google Scholar 

  33. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  34. Krohling RA, dos Santos Coelho L (2006) Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Trans Syst Man Cybern Part B Cybern 36:1407–1416

    Article  Google Scholar 

  35. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933

    Article  MATH  Google Scholar 

  36. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. ASME J Eng Ind 98:1021–1025

    Article  Google Scholar 

  37. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229. doi:10.1115/1.2912596

    Article  Google Scholar 

  38. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183. doi:10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  39. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612

    Article  Google Scholar 

  40. Kannan B, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411

    Article  Google Scholar 

  41. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26:30–45

    Google Scholar 

  42. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  43. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178:3043–3074

    Article  Google Scholar 

  44. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640

    Article  Google Scholar 

  45. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748

    Article  Google Scholar 

  46. Tsai J-F (2005) Global optimization of nonlinear fractional programming problems in engineering design. Eng Optim 37:399–409

    Article  MathSciNet  Google Scholar 

  47. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579

    Article  MATH  MathSciNet  Google Scholar 

  48. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99

    Article  Google Scholar 

  49. Coello Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Article  Google Scholar 

  50. Coello Coello CA, Mezura Montes E (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203

    Article  Google Scholar 

  51. Deb K, Gene AS (1997) A robust optimal design technique for mechanical component design. Presented at the D. Dasgupta, Z. Michalewicz (eds) Evolutionary algorithms in engineering applications, Berlin

  52. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

    Article  MATH  MathSciNet  Google Scholar 

  53. Li L, Huang Z, Liu F, Wu Q (2007) A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 85:340–349

    Article  Google Scholar 

  54. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput Int J Comput Aided Eng 27:155–182

    MATH  Google Scholar 

  55. Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39(5):829–846

    Article  MATH  MathSciNet  Google Scholar 

  56. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 9313 kb)

Appendices

Appendix 1

figure c

Appendix 2

2.1 Welded beam design problem

$$\begin{array}{ll} {\text{Consider}} & {\vec{x} = \left[{x_{1} \,x_{2} \,x_{3} \,x_{4}} \right] = \left[{h \,l\, t\, b} \right],} \\ {\text{Minimize}} & {f\left({\vec{x}} \right) = 1.10471x_{1}^{2} x_{2}} \\ & {\quad +\,0.04811x_{3} x_{4} \left( {14.0 + x_{2} } \right),} \\ {\text{Subject to}} & {g_{1} \left( {\vec{x}} \right) = \tau \left( {\vec{x}} \right) - \tau_{\hbox{max} } \le 0,} \\ & {g_{2} \left( {\vec{x}} \right) = \sigma \left( {\vec{x}} \right) - \sigma_{\hbox{max} } \le 0,} \\ & {g_{3} \left( {\vec{x}} \right) = \delta \left( {\vec{x}} \right) - \delta_{\hbox{max} } \le 0} \\ & {g_{4} \left( {\vec{x}} \right) = x_{1} - x_{4} \le 0,} \\ & {g_{5} \left( {\vec{x}} \right) = P - P_{c} (\vec{x}) \le 0,} \\ & {g_{6} \left( {\vec{x}} \right) = 0.125 - x_{1} \le 0} \\ & {g_{7} \left( {\vec{x}} \right) = 1.10471x_{1}^{2}} \\ & {\quad +\,0.04811x_{3} x_{4} \left( {14.0 + x_{2} } \right) - 5.0 \le 0} \\ {\text{Variable range}} & {0.1 \le x_{1} \le 2,} \\ & {0.1 \le x_{2} \le 10,}\\ & {0.1 \le x_{3} \le 10,} \\ & {0.1 \le x_{4} \le 2} \\ {\text{where}} & {\tau \left( {\vec{x}} \right) = \sqrt {(\tau^{{\prime }} )^{2} + 2\tau^{\prime} \tau^{\prime \prime} \frac{{x_{2} }}{2R} + (\tau^{\prime \prime} )^{2} } ,} \\ & {\tau^{{\prime }} = \frac{P}{{\sqrt{2} x_{1} x_{2} }}, \quad \tau^{{\prime \prime }} = \frac{\text{MR}}{J},}\\ & {M = P\left( {L + \frac{{x_{2} }}{2}} \right), }\hfill \\ {} \hfill & {R = \sqrt {\frac{{x_{2}^{2} }}{4} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } ,} \hfill \\ {} \hfill & {J = 2\left\{ {\sqrt{2} x_{1} x_{2} \left[ {\frac{{x_{2}^{2} }}{4} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } \right]} \right\},} \hfill \\ {} \hfill & {\sigma \left( {\vec{x}} \right) = \frac{{6{\text{PL}}}}{{x_{4} x_{3}^{2} }},\quad \delta \left( {\vec{x}} \right) = \frac{{6{\text{PL}}^{3} }}{{Ex_{3}^{2} x_{4} }}} \hfill \\ {} \hfill & {P_{c} \left( { \vec{x}} \right) = \frac{{4.013E\sqrt {\frac{{x_{3}^{2} x_{4}^{6} }}{36}} }}{{L^{2} }}\left( {1 - \frac{{x_{3} }}{2L}\sqrt{\frac{E}{4G}} } \right),} \hfill \\ {} \hfill & {P = 6000 \;{\text{lb}},\,\, L = 14\; {\text{in}} ., \,\,\delta_{\hbox{max} } = 0.25\; {\text{in}} .,} \\ & {E = 30 \times 1^{6} \; {\text{psi}}, \quad G = 12 \times 10^{6} \;{\text{psi}},} \\ & {\tau_{ \hbox{max} } = 13600\;{\text{psi}},\;\;\sigma_{ \hbox{max} } = 30000\;{\text{psi}}} \hfill \\ \end{array}$$

2.2 Gear train design problem

$$\begin{array}{*{20}l} {\text{Consider}} \hfill & {\vec{x} = \left[ {x_{1} \, x_{2} \, x_{3} \,x_{4} } \right] = \left[ {n_{A} \,n_{B} \,n_{C} \,n_{D} } \right],} \hfill \\ {\text{Minimize}} \hfill & {f\left( {\vec{x}} \right) = \left( {\frac{1}{6.931} - \frac{{x_{3} x_{2} }}{{x_{1} x_{4} }}} \right)^{2} ,} \hfill \\ {\text{Variable range}} \hfill & {12 \le x_{1} ,x_{2} ,x_{3} , x_{4} \le 60,} \hfill \\ \end{array}$$

2.3 Three-bar truss design problem

$$\begin{array}{ll} {\text{Consider}} \hfill & {\vec{x} = \left[ {x_{1} \,x_{2} } \right] = \left[ {A_{1} \,A_{2} } \right],} \hfill \\ {\text{Minimize}} \hfill & { f\left( {\vec{x}} \right) = \left( {2\sqrt{2} x_{1} + x_{2} } \right)*l,} \hfill \\ {\text{Subject to }} \hfill & {g_{1} \left( {\vec{x}} \right) = \frac{{\sqrt{2} x_{1} + x_{2} }}{{\sqrt{2} x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0,} \hfill \\ {} \hfill & { g_{2} \left( {\vec{x}} \right) = \frac{{x_{2} }}{{\sqrt{2} x_{1}^{2} + 2x_{1} x_{2} }}P - \sigma \le 0,} \hfill \\ {} \hfill & { g_{3} \left( {\vec{x}} \right) = \frac{1}{{\sqrt{2} x_{2} + x_{1} }}P - \sigma \le 0,} \hfill \\ {\text{Variable range }} \hfill & {0 \le x_{1} ,x_{2} \le 1,} \hfill \\ {\text{where }} \hfill & l = 100 \,\,{\text{cm}}, P = 2\,\,{\text{KN}}/{\text{cm}}^{2} ,\\ & \sigma = 2\,\,{\text{KN}}/{\text{cm}}^{2} \hfill \\ \end{array}$$

2.4 Pressure vessel design problem

$$\begin{array}{ll} {\text{Consider }} \hfill & {\vec{x} = \left[ {x_{1} \,x_{2} \,x_{3} \,x_{4} } \right] = \left[ {T_{\text{s}} \,T_{\text{h}} \,R \,L} \right],} \hfill \\ {\text{Minimize }} \hfill & {f\left( {\vec{x}} \right) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2}} \\ &\quad {+\,3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3},} \hfill \\ {\text{Subject to}} \hfill & { g_{1} \left( {\vec{x}} \right) = - x_{1} + 0.0193x_{3} \le 0,} \hfill \\ {} \hfill & { g_{2} \left( {\vec{x}} \right) = - x_{3} + 0.00954x_{3} \le 0,} \hfill \\ {} \hfill & {g_{3} \left( {\vec{x}} \right) = - \pi x_{3}^{2} x_{4} - \frac{4}{3}\pi x_{3}^{3}} \\ &\quad {+\,1296000 \le 0,} \hfill \\ {} \hfill & { g_{4} \left( {\vec{x}} \right) = x_{4} - 240 \le 0,} \hfill \\ {\text{Variable range }} \hfill & {0 \le x_{1} \le 99,} \hfill \\ {} \hfill & { 0 \le x_{2} \le 99, } \hfill \\ {} \hfill & { 10 \le x_{3} \le 200, } \hfill \\ {} \hfill & { 10 \le x_{4} \le 200} \hfill \\ \end{array}$$

2.5 Cantilever beam design

$$\begin{array}{*{20}l} {\text{Consider}} \hfill & {\vec{x} = \left[ {x_{1} x_{2} x_{3} x_{4} x_{5} } \right]} \hfill \\ {\text{Minimize}} \hfill & {f\left( {\vec{x}} \right) = 0.6224\left( {x_{1} + x_{2} + x_{3} + x_{4} + x_{5} } \right),} \hfill \\ {\text{Subject to }} \hfill & { g\left( {\vec{x}} \right) = \frac{61}{{x_{1}^{3} }} + \frac{27}{{x_{2}^{3} }} + \frac{19}{{x_{3}^{3} }} + \frac{7}{{x_{4}^{3} }} + \frac{1}{{x_{5}^{3} }} - 1 \le 0,} \hfill \\ {\text{Variable range }} \hfill & {0.01 \le x_{1} , x_{2} , x_{3} , x_{4} , x_{5} \le 100,} \hfill \\ \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirjalili, S., Mirjalili, S.M. & Hatamlou, A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. Neural Comput & Applic 27, 495–513 (2016). https://doi.org/10.1007/s00521-015-1870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1870-7

Keywords

Navigation