Skip to main content

Designing precision fuzzy controller for load swing of an overhead crane

Abstract

In this paper, a fuzzy logic controller is designed and proposed for controlling load swing of an overhead crane. To consider a complete model of the plant, the quadratic derivative of state variables is added to the conventional model which causes an extra weighting. The aim of the controller designed is to keep the load angle (ϕ) zero, all the time, which means no physical swinging in the load’s position. The results obtained are compared with the optimal control method, as one of the well-known control techniques, to verify the designed controller. The results show that the designed fuzzy controller is able to dampen the oscillations in the load swing angle and load’s angular velocity, in a reasonable time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ko A, Lau HY, Lau T (2004) Artificial immune systems. Springer, Berlin, pp 91–105

    Book  Google Scholar 

  2. 2.

    Rahmani R, Tayyebi M, Majid M, Hassan MY, Rahman H (2011) IEEE on applied power electronics colloquium (IAPEC), 2011, pp 165–169

  3. 3.

    Rahmani R, Othman MF, Shojaei AA, Yusof R (2014) Static VAR compensator using recurrent neural network. Electr Eng 96(2):109–119

    Article  Google Scholar 

  4. 4.

    Rahmani R, Yusof R, Seyedmahmoudian M, Mekhilef S (2013) Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123:163–170

    Article  Google Scholar 

  5. 5.

    Bartolini G, Pisano A, Punta E, Usai E (2003) A survey of applications of second-order sliding mode control to mechanical systems. Int J Control 76(9–10):875–892

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Liu R, Li S, Chen X (2013) IEEE control conference (CCC), 2013 32nd Chinese, pp 2195–2200

  7. 7.

    Kodani N, Ouchi S, Todaka Y (2003) IEEE SICE 2003 annual conference, vol. 2, pp 1860–1863

  8. 8.

    Wang Z, Surgenor BW (2006) A problem with the LQ control of overhead cranes. J Dyn Syst Meas Control 128(2):436–440

    Article  Google Scholar 

  9. 9.

    Moon SC, Lee WG, Lee SG (2013) Adaptive sliding mode control of overhead cranes with varying cable length. J Mech Sci Technol 27(3):885–893

    MathSciNet  Article  Google Scholar 

  10. 10.

    Prommaneewat K, Roengruen P, Kongratana V (2007) IEEE international conference on control, automation and systems, 2007. ICCAS’07, pp 1954–1957

  11. 11.

    Trisuwannawat T, Tirasesth K, Iida M, Komine N, Ochiai Y (2000) Derivative state constrained optimal H2 control for oscillatory systems and its application. IEEJ Trans Ind Appl 120(6):775–781

    Article  Google Scholar 

  12. 12.

    Eltohamy KG, Kuo CY (1998) Nonlinear optimal control of a triple link inverted pendulum with single control input. Int J Control 69(2):239–256

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Huang SJ, Huang CL (2000) Control of an inverted pendulum using grey prediction model. IEEE Trans Ind Appl 36(2):452–458

    Article  Google Scholar 

  14. 14.

    Shojaei A, Othman MF, Rahmani R, Rani M (2011) IEEE fifth UKSim European symposium on computer modeling and simulation (EMS), 2011, pp 83–87

  15. 15.

    Auernig JW, Troger H (1987) Time optimal control of overhead cranes with hoisting of the load. Automatica 23(4):437–447

    Article  MATH  Google Scholar 

  16. 16.

    Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111

    MathSciNet  Article  Google Scholar 

  17. 17.

    Rahmani R, Mahmodian M, Mekhilef S, Shojaei A (2012) IEEE student conference on research and development (SCOReD), 2012, pp 109–113. doi:10.1109/SCOReD.2012.6518621

  18. 18.

    Rahmani R, Seyedmahmoudian M, Mekhilef S, Yusof R (2013) Implementation of fuzzy logic maximum power point tracking controller for photovoltaic system. Am J Appl Sci 10(3):209–218

    Article  Google Scholar 

  19. 19.

    Rahmani R, Langeroudi N, Yousefi R, Mahdian M, Seyedmahmoudian M (2014) Neural Comput Appl 25(3–4):879. doi:10.1007/s00521-014-1561-9

    Article  Google Scholar 

  20. 20.

    Ustuntac T, Şahin AD (2008) J Wind Eng Ind Aerodyn 96(5):611. doi:10.1016/j.jweia.2008.02.001

  21. 21.

    Lima F, Kaiser W, da Silva IN, de Oliveira Jr, AA (2014) Appl Soft Comput (0). doi:10.1016/j.asoc.2014.03.044

  22. 22.

    Mozaffari A, Behzadipour S, Kohani M (2014) Appl Soft Comput 14(Part A0):12. Special issue on hybrid intelligent methods for health technologies. doi:10.1016/j.asoc.2013.09.023

  23. 23.

    Liu D, Yi J, Zhao D, Wang W (2005) Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics 15(5):505–522

    Article  Google Scholar 

  24. 24.

    Precup RE, Filip HI, Rdac MB, Petriu EM, Preitl S, Drago CA (2014) Appl Soft Comput. doi:10.1016/j.asoc.2014.01.013

  25. 25.

    Benhidjeb A, Gissinger GL (1995) Fuzzy control of an overhead crane performance comparison with classic control. Control Eng Pract 3(12):1687–1696

    Article  Google Scholar 

  26. 26.

    Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans Syst Man Cybern 20(2):419–435

    Article  MATH  Google Scholar 

  27. 27.

    Castro JL (1995) Fuzzy logic controllers are universal approximators. IEEE Trans Syst Man Cybern 25(4):629–635

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rasoul Rahmani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ranjbari, L., Shirdel, A.H., Aslahi-Shahri, M. et al. Designing precision fuzzy controller for load swing of an overhead crane. Neural Comput & Applic 26, 1555–1560 (2015). https://doi.org/10.1007/s00521-015-1825-z

Download citation

Keywords

  • Fuzzy logic controller
  • Load swing
  • Overhead crane