Advertisement

Neural Computing and Applications

, Volume 26, Issue 5, pp 1227–1239 | Cite as

Parameter extraction of solar cell models using chaotic asexual reproduction optimization

  • Xiaofang YuanEmail author
  • Yuqing He
  • Liangjiang Liu
Original Article

Abstract

To simulate solar cell systems or to optimize photovoltaic (PV) system performance, the estimation of solar cell model parameters is extremely crucial. In this paper, the parameter extraction of solar cell models is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured data. A novel chaotic asexual reproduction optimization (CARO) using chaotic sequence for global search is applied to this parameter extraction problem. All the seven or five parameters of solar cell models are extracted simultaneously using measured input–output data. The CARO has been tested with different solar cell models, i.e., double diode, single diode, and PV module. Comparison simulation results with other parameter extraction techniques show that the CARO signifies its potential as another optional method.

Keywords

Parameter extraction Solar cell models Chaotic asexual reproduction optimization (CARO) Chaotic sequence 

References

  1. 1.
    Liu GY, Nguang SK, Partridge A (2011) A general modeling method for I–V characteristics of geometrically and electrically configured photovoltaic arrays. Energy Convers Manag 52(12):3439–3445CrossRefGoogle Scholar
  2. 2.
    Amrouche B, Guessoum A, Belhamel M (2012) A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison. Appl Energy 91(1):395–404CrossRefGoogle Scholar
  3. 3.
    Khan F, Baek SH, Park Y, Kim JH (2013) Extraction of diode parameters of silicon solar cells under high illumination conditions. Energy Convers Manag 76:421–429CrossRefGoogle Scholar
  4. 4.
    Orioli A, Gangi AD (2013) A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Appl Energy 102(SI):1160–1177CrossRefGoogle Scholar
  5. 5.
    Tian HM, Mancilla-David F, Ellis K, Muljadi E, Jenkins P (2012) A cell-to-module-to-array detailed model for photovoltaic panels. Sol Energy Mater Sol Cells 86(9):2695–2706Google Scholar
  6. 6.
    Cubas J, Pindado S, Victoria M (2014) On the analytical approach for modeling photovoltaic systems behavior. J Power Sources 247:467–474CrossRefGoogle Scholar
  7. 7.
    Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Sol Energy 4(1):1–12Google Scholar
  8. 8.
    Kim W, Choi W (2010) A novel parameter extraction method for the one-diode solar cell model. Sol Energy 84(6):1008–1019CrossRefGoogle Scholar
  9. 9.
    Das AK (2012) Analytical derivation of explicit J–V model of a solar cell from physics based implicit model. Sol Energy 86(1):26–30CrossRefGoogle Scholar
  10. 10.
    Lun SX, Du CJ, Yang GH, Wang S, Guo TT, Sang JS, Li JP (2013) An explicit approximate I–V characteristic model of a solar cell based on pad\(\acute{e}\) approximants. Sol Energy 92:147–159CrossRefGoogle Scholar
  11. 11.
    Lun SX, Du CJ, Guo TT, Wang S, Sang JS, Li JP (2013) A new explicit I–V model of a solar cell based on Taylor’s series expansion. Sol Energy 94:221–232CrossRefGoogle Scholar
  12. 12.
    Bayhan H, Bayhan M (2011) A simple approach to determine the solar cell diode ideality factor under illumination. Sol Energy 85(5):769–775CrossRefGoogle Scholar
  13. 13.
    Ghani F, Duke M, Carson J (2013) Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: experimental evaluation. Sol Energy 87:246–253CrossRefGoogle Scholar
  14. 14.
    Ghani F, Duke M, Carson J (2013) Numerical calculation of series and shunt resistances and diode quality factor of a photovoltaic cell using the Lambert W-function. Sol Energy 91:422–431CrossRefGoogle Scholar
  15. 15.
    Chen YF, Wang XM, Li D, Hong RJ, Shen H (2011) Parameters extraction from commercial solar cells I–V characteristics and shunt analysis. Appl Energy 88(6):2239–2244CrossRefGoogle Scholar
  16. 16.
    Peng LL, Sun YZ, Meng Z, Wang YL, Xu Y (2013) A new method for determining the characteristics of solar cells. J Power Sources 227:131–136CrossRefGoogle Scholar
  17. 17.
    Karatepe E, Boztepe M, Colak M (2006) Neural network based solar cell model. Energy Convers Manag 47(9-10):1159–1178CrossRefGoogle Scholar
  18. 18.
    Patra JC (2011) Neural network-based model for dual-junction solar cells. Progress in Photovoltaics 19(1):33–44MathSciNetCrossRefGoogle Scholar
  19. 19.
    Patra JC (2011) Chebyshev neural network-based model for dual-junction solar cells. IEEE Trans Energy Convers 26(1):132–139CrossRefGoogle Scholar
  20. 20.
    Fathabadi H (2013) Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics. Energy Convers Manag 76:253–259CrossRefGoogle Scholar
  21. 21.
    Bonanno F, Capizzi G, Graditi G, Napoli C, Tina GM (2012) A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl Energy 97(SI):956–961CrossRefGoogle Scholar
  22. 22.
    Zagrouba M, Sellami A, Bouaicha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol Energy 84(5):860–866CrossRefGoogle Scholar
  23. 23.
    Ye M, Wang X, Xu Y (2009) Parameter extraction of solar cells using particle swarm optimization. J Appl Phys 105(9):094502MathSciNetCrossRefGoogle Scholar
  24. 24.
    Huang W, Jiang C, Xue L, Song D (2011) Extracting solar cell model parameters based on chaos particle swarm algorithm. In: Proceedings of international conference on electric information and control engineering (ICEICE), pp 398–402Google Scholar
  25. 25.
    AlRashidi MR, AlHajri MF, El-Naggar KM, Al-Othman AK (2011) A new estimation approach for determining the I–V characteristics of solar cells. Sol Energy 85(7):1543–1550CrossRefGoogle Scholar
  26. 26.
    AlHajri MF, El-Naggar KM, AlRashidi MR, Al-Othman AK (2012) Optimal extraction of solar cell parameters using pattern search. Renew Energy 44:238–245CrossRefGoogle Scholar
  27. 27.
    Gong W, Cai Z (2013) Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol Energy 94:209–220CrossRefGoogle Scholar
  28. 28.
    El-Naggar KM, AlRashidi MR, AlHajri MF, Al-Othman AK (2012) Simulated Annealing algorithm for photovoltaic parameters identification. Sol Energy 86(1):266–274CrossRefGoogle Scholar
  29. 29.
    Askarzadeh A, Rezazadeh A (2013) Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl Energy 102(SI):943–949CrossRefGoogle Scholar
  30. 30.
    Farasat A, Menhaj MB, Mansouri T, Moghadam MRS (2010) ARO: a new model-free optimization algorithm inspired from asexual reproduction. Appl Soft Comput 10(4):1284–1292CrossRefGoogle Scholar
  31. 31.
    Mansouri T, Farasat A, Menhaj MB, Moghadam MRS (2011) ARO: a new model free optimization algorithm for real time applications inspired by the asexual reproduction. Expert Syst Appl 38(5):4866–4874CrossRefGoogle Scholar
  32. 32.
    Khanteymoori AR, Menhaj MB, Homayounpour MM (2011) Structure learning in Bayesian networks using asexual reproduction optimization. ETRI J 33(1):39–49CrossRefGoogle Scholar
  33. 33.
    Asl AN, Menhaj MB, Sajedin A (2014) Control of leader–follower formation and path planning of mobile robots using Asexual Reproduction Optimization (ARO). Appl Soft Comput 14:563–576CrossRefGoogle Scholar
  34. 34.
    Yuan XF, Yang YM, Wang H (2012) Improved parallel chaos optimization algorithm. Appl Math Comput 219(8):3590–3599MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tatsumi K, Ibuki T, Tanino T (2013) A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions. Appl Math Comput 219(17):8991–9011zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang DX, Liu ZJ, Zhou JL (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19(4):1229–1246MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ma S (2012) Chaotic populations in genetic algorithm. Appl Soft Comput 12(8):2409–2424CrossRefGoogle Scholar
  38. 38.
    Li Y, Wen Q, Zhang B (2012) Chaotic ant swarm optimization with passive congregation. Nonlinear Dyn 68(1-2):129–136zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Gao SC, Vairappan C, Wang Y, Cao QP, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62MathSciNetCrossRefGoogle Scholar
  40. 40.
    Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216(9):2687–2699zbMATHCrossRefGoogle Scholar
  41. 41.
    Baykasoglu Adil (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12(3):1055–1067CrossRefGoogle Scholar
  42. 42.
    Bouzidi K, Chegaar M, Nehaoua N (2007) New method to extract the parameters of solar cells from their illuminated I–V curve. In: 4th international conference on computer integrated manufacturingGoogle Scholar
  43. 43.
    Chegaar M, Nehaoua N, Bouhemadou A (2008) Organic and inorganic solar cells parameters evaluation from single I–V plot. Energy Convers Manag 49(6):1376–1379CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2014

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringHunan UniversityHunanChina
  2. 2.Hunan Institute of Metrology and TestChangshaChina

Personalised recommendations