Skip to main content

Hybrid krill herd algorithm with differential evolution for global numerical optimization

Abstract

In order to overcome the poor exploitation of the krill herd (KH) algorithm, a hybrid differential evolution KH (DEKH) method has been developed for function optimization. The improvement involves adding a new hybrid differential evolution (HDE) operator into the krill, updating process for the purpose of dealing with optimization problems more efficiently. The introduced HDE operator inspires the intensification and lets the krill perform local search within the defined region. DEKH is validated by 26 functions. From the results, the proposed methods are able to find more accurate solution than the KH and other methods. In addition, the robustness of the DEKH algorithm and the influence of the initial population size on convergence and performance are investigated by a series of experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lévano M, Nowak H (2011) New aspects of the elastic net algorithm for cluster analysis. Neural Comput Appl 20(6):835–850. doi:10.1007/s00521-010-0498-x

    Article  Google Scholar 

  2. 2.

    Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi A (2012) A multi-stage particle swarm for optimum design of truss structures. Neural Comput Appl. doi:10.1007/s00521-012-1072-5

    Google Scholar 

  3. 3.

    Wang G, Guo L, Duan H, Liu L, Wang H (2012) Path planning for UCAV using bat algorithm with mutation. Sci World J 2012:1–15. doi:10.1100/2012/418946

    MATH  Google Scholar 

  4. 4.

    Li X, Yin M (2013) An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Adv Eng Softw 55:10–31. doi:10.1016/j.advengsoft.2012.09.003

    Article  Google Scholar 

  5. 5.

    Zou D, Gao L, Li S, Wu J (2011) Solving 0-1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput 11(2):1556–1564. doi:10.1016/j.asoc.2010.07.019

    Article  Google Scholar 

  6. 6.

    Zou D, Liu H, Gao L, Li S (2011) An improved differential evolution algorithm for the task assignment problem. Eng Appl Artif Intell 24(4):616–624. doi:10.1016/j.engappai.2010.12.002

    Article  Google Scholar 

  7. 7.

    Yang XS, Gandomi AH, Talatahari S, Alavi AH (2013) Metaheuristics in water. Geotechnical and Transport Engineering, Elsevier

    Google Scholar 

  8. 8.

    Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Elsevier, Waltham

    Google Scholar 

  9. 9.

    Goldberg DE (1998) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley, New York

    Google Scholar 

  10. 10.

    Zhao M, Ren J, Ji L, Fu C, Li J, Zhou M (2012) Parameter selection of support vector machines and genetic algorithm based on change area search. Neural Comput Appl 21(1):1–8. doi:10.1007/s00521-011-0603-9

    Article  MATH  Google Scholar 

  11. 11.

    Loghmanian S, Jamaluddin H, Ahmad R, Yusof R, Khalid M (2012) Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm. Neural Comput Appl 21(6):1281–1295. doi:10.1007/s00521-011-0560-3

    Article  Google Scholar 

  12. 12.

    Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  13. 13.

    Gandomi AH, Yang X-S, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput Math Appl 63(1):191–200. doi:10.1016/j.camwa.2011.11.010

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Khazraee S, Jahanmiri A, Ghorayshi S (2011) Model reduction and optimization of reactive batch distillation based on the adaptive neuro-fuzzy inference system and differential evolution. Neural Comput Appl 20(2):239–248. doi:10.1007/s00521-010-0364-x

    Article  Google Scholar 

  15. 15.

    Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. doi:10.1177/003754970107600201

    Article  Google Scholar 

  16. 16.

    Wang H, Yuan X, Wang Y, Yang Y (2013) Harmony search algorithm-based fuzzy-PID controller for electronic throttle valve. Neural Comput Appl 22(2):329–336. doi:10.1007/s00521-011-0678-3

    Article  Google Scholar 

  17. 17.

    Gholizadeh S, Barzegar A (2013) Shape optimization of structures for frequency constraints by sequential harmony search algorithm. Eng Optim 45(6):627–646. doi:10.1080/0305215x.2012.704028

    Article  MathSciNet  Google Scholar 

  18. 18.

    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. doi:10.1007/s10898-007-9149-x

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Paper presented at the proceeding of the IEEE international conference on neural networks, Perth, Australia, 27 Nov–1 Dec

  20. 20.

    Chen D, Zhao C, Zhang H (2011) An improved cooperative particle swarm optimization and its application. Neural Comput Appl 20(2):171–182. doi:10.1007/s00521-010-0503-4

    Article  Google Scholar 

  21. 21.

    Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013) Chaos-enhanced accelerated particle swarm algorithm. Commun Nonlinear Sci Numer Simul 18(2):327–340. doi:10.1016/j.cnsns.2012.07.017

  22. 22.

    Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, Oxford

    Google Scholar 

  23. 23.

    Beyer H (2001) The theory of evolution strategies. Springer, New York

    Book  Google Scholar 

  24. 24.

    Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  25. 25.

    Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using Firefly Algorithm. Comput Struct 89(23–24):2325–2336. doi:10.1016/j.compstruc.2011.08.002

    Article  Google Scholar 

  26. 26.

    Cai X, Fan S, Tan Y (2012) Light responsive curve selection for photosynthesis operator of APOA. Int J Bio-Inspired Comput 4(6):373–379

    Article  Google Scholar 

  27. 27.

    Xie L, Zeng J, Formato RA (2012) Selection strategies for gravitational constant G in artificial physics optimisation based on analysis of convergence properties. Int J Bio-Inspired Comput 4(6):380–391

    Article  Google Scholar 

  28. 28.

    Simon D (2008) Biogeography-based optimization. IEEE T Evol Comput 12(6):702–713. doi:10.1109/TEVC.2008.919004

    Article  Google Scholar 

  29. 29.

    Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239. doi:10.1016/j.ins.2011.07.026

    Article  Google Scholar 

  30. 30.

    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of World congress on nature & biologically inspired computing (NaBIC 2009), Coimbatore, India, Dec 2009. IEEE Publications, USA, pp 210–214

  31. 31.

    Gandomi AH, Talatahari S, Yang XS, Deb S (2012) Design optimization of truss structures using cuckoo search algorithm. Struct Des Tall Spec. doi:10.1002/tal.1033

    Google Scholar 

  32. 32.

    Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35. doi:10.1007/s00366-011-0241-y

    Article  MathSciNet  Google Scholar 

  33. 33.

    Li X, Zhang J, Yin M (2013) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 1–11. doi:10.1007/s00521-013-1433-8

  34. 34.

    Shumeet B (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  35. 35.

    Erol OK, Eksin I (2006) A new optimization method: Big Bang-Big Crunch. Adv Eng Softw 37(2):106–111. doi:10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  36. 36.

    Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput Struct 87(17–18):1129–1140. doi:10.1016/j.compstruc.2009.04.011

    Article  Google Scholar 

  37. 37.

    Kaveh A, Talatahari S (2010) Optimal design of Schwedler and ribbed domes via hybrid Big Bang-Big Crunch algorithm. J Constr Steel Res 66(3):412–419. doi:10.1016/j.jcsr.2009.10.013

    Article  Google Scholar 

  38. 38.

    Kaveh A, Talatahari S (2010) A discrete big bang-big crunch algorithm for optimal design of skeletal structures. Asian J Civil Eng 11(1):103–122

    Google Scholar 

  39. 39.

    Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255. doi:10.1007/s00521-012-1028-9

    Article  Google Scholar 

  40. 40.

    Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483. doi:10.1108/02644401211235834

    Article  Google Scholar 

  41. 41.

    Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289. doi:10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  42. 42.

    Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simulat 17(12):4831–4845. doi:10.1016/j.cnsns.2012.05.010

    Article  MATH  MathSciNet  Google Scholar 

  43. 43.

    El-Abd M (2011) A hybrid ABC-SPSO algorithm for continuous function optimization. In: Swarm intelligence (SIS), 2011 IEEE symposium on, Paris, 11–15 Apr 2011. IEEE, pp 1–6. doi:10.1109/SIS.2011.5952576

  44. 44.

    Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:21. doi:10.1155/2013/696491

    Google Scholar 

  45. 45.

    Duan H, Zhao W, Wang G, Feng X (2012) Test-sheet composition using analytic hierarchy process and hybrid metaheuristic algorithm TS/BBO. Math Probl Eng 2012:1–22. doi:10.1155/2012/712752

    Google Scholar 

  46. 46.

    Gao X, Wang X, Jokinen T, Ovaska S, Arkkio A, Zenger K (2012) A hybrid PBIL-based harmony search method. Neural Comput Appl 21(5):1071–1083. doi:10.1007/s00521-011-0675-6

    Article  Google Scholar 

  47. 47.

    Geem ZW (2009) Particle-swarm harmony search for water network design. Eng Optim 41(4):297–311. doi:10.1080/03052150802449227

    Article  Google Scholar 

  48. 48.

    Gong W, Cai Z, Ling C (2010) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15(4):645–665. doi:10.1007/s00500-010-0591-1

    Article  Google Scholar 

  49. 49.

    Kuo RJ, Syu YJ, Chen Z-Y, Tien FC (2012) Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Inf Sci 195:124–140. doi:10.1016/j.ins.2012.01.021

    Article  Google Scholar 

  50. 50.

    Sun Y, Zhang L, Gu X (2012) A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. Neurocomputing 98:76–89. doi:10.1016/j.neucom.2011.08.043

    Article  Google Scholar 

  51. 51.

    Sheikhan M, Mohammadi N (2012) Neural-based electricity load forecasting using hybrid of GA and ACO for feature selection. Neural Comput Appl 21(8):1961–1970. doi:10.1007/s00521-011-0599-1

    Article  Google Scholar 

  52. 52.

    Marichelvam M (2012) An improved hybrid Cuckoo Search (IHCS) metaheuristics algorithm for permutation flow shop scheduling problems. Int J Bio-Inspired Comput 4(4):200–205. doi:10.1504/IJBIC.2012.048061

    Article  Google Scholar 

  53. 53.

    Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2013) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl. doi:10.1007/s00521-012-1304-8

    Google Scholar 

  54. 54.

    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE T Evol Comput 3(2):82–102

    Article  Google Scholar 

  55. 55.

    Yang X-S, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation. Elsevier, Waltham

    Google Scholar 

  56. 56.

    Arslan M, Çunkaş M, Sağ T (2012) Determination of induction motor parameters with differential evolution algorithm. Neural Comput Appl 21(8):1995–2004. doi:10.1007/s00521-011-0612-8

    Article  Google Scholar 

  57. 57.

    Li X, Yin M (2012) Application of differential evolution algorithm on self-potential data. PLoS ONE 7(12):e51199. doi:10.1371/journal.pone.0051199

    Article  Google Scholar 

  58. 58.

    Jia L, Cheng D, Chiu M-S (2012) Pareto-optimal solutions based multi-objective particle swarm optimization control for batch processes. Neural Comput Appl 21(6):1107–1116. doi:10.1007/s00521-011-0659-6

    Article  Google Scholar 

  59. 59.

    Zhang Y, Huang D, Ji M, Xie F (2011) Image segmentation using PSO and PCM with Mahalanobis distance. Expert Syst Appl 38(7):9036–9040. doi:10.1016/j.eswa.2011.01.041

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gai-Ge Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, GG., Gandomi, A.H., Alavi, A.H. et al. Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput & Applic 25, 297–308 (2014). https://doi.org/10.1007/s00521-013-1485-9

Download citation

Keywords

  • Global optimization problem
  • Krill herd (KH)
  • Hybrid differential evolution (HDE) operator