Skip to main content
Log in

Application of SVR, Taguchi loss function, and the artificial bee colony algorithm to resolve multiresponse parameter design problems: a case study on optimizing the design of a TIR lens

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multiresponse parameter design problems have become increasingly important and have received considerable attention from both researchers and practitioners since there are usually several quality characteristics that must be optimized simultaneously in most modern products/processes. This study applies support vector regression (SVR), Taguchi loss function, and the artificial bee colony (ABC) algorithm to develop a six-staged procedure that resolves these common and complicated parameter design problems. SVR is used to model the mathematical relationship between input control factors and output responses, and the ABC algorithm is used to find the optimal control factor settings by searching the well-constructed SVR models in which the Taguchi loss function is applied to evaluate the overall performance of a product/process. The feasibility and effectiveness of the proposed approach are demonstrated via a case study in which the design of a total internal reflection (TIR) lens is optimized while fabricating an MR16 light-emitting diode lamp. Experimental results indicate that the proposed solution procedure can provide highly robust design parameter settings for TIR lenses that can be directly applied in real manufacturing processes. Comparisons with the Taguchi method reveal that the Taguchi method is an undesirable and inappropriate method for resolving multiple-response parameter design problems, while the ABC algorithm can search the solution spaces in continuous domains modeled via SVR instead of in the limited discrete experiment levels, thus finding a more robust design than that obtained by the traditional analysis of variance. Consequently, the proposed integrated approach in this study can be considered feasible and effective and can be popularized as a useful tool for resolving general multiresponse parameter design problems in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tong LI, Wang CH, Chen HC (2005) Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution. Int J Adv Manuf Tech 27(3–4):407–414. doi:10.1007/s00170-004-2157-9

    Article  Google Scholar 

  2. Routara BC, Mohanty SD, Datta S, Bandyopadhyay A, Mahapatra SS (2010) Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. Int J Adv Manuf Tech 51(1–4):135–143. doi:10.1007/s00170-010-2599-1

    Article  Google Scholar 

  3. Al-Refaie A (2012) Optimizing performance with multiple responses using cross-evaluation and aggressive formulation in data envelopment analysis. IIE Trans 44(4):262–276. doi:10.1080/0740817x.2011.566908

    Article  Google Scholar 

  4. Lu DW, Antony J (2002) Optimization of multiple responses using a fuzzy-rule based inference system. Int J Prod Res 40(7):1613–1625. doi:10.1080/00207540210122202

    Article  Google Scholar 

  5. Kovach J, Cho BR (2008) Development of a multidisciplinary-multiresponse robust design optimization model. Eng Optimiz 40(9):805–819. doi:10.1080/03052150802046304

    Article  MathSciNet  Google Scholar 

  6. Dubey AK, Yadava V (2008) Multi-objective optimisation of laser beam cutting process. Opt Laser Technol 40(3):562–570. doi:10.1016/j.optlastec.2007.09.002

    Article  Google Scholar 

  7. Sibalija TV, Majstorovic VD, Miljkovic ZD (2011) An intelligent approach to robust multi-response process design. Int J Prod Res 49(17):5079–5097. doi:10.1080/00207543.2010.511476

    Article  Google Scholar 

  8. He Z, Zhu PF, Park SH (2012) A robust desirability function method for multi-response surface optimization considering model uncertainty. Eur J Oper Res 221(1):241–247. doi:10.1016/j.ejor.2012.03.009

    Article  MATH  MathSciNet  Google Scholar 

  9. Bera S, Mukherjee I (2012) An adaptive penalty function-based maximin desirability index for close tolerance multiple-response optimization problems. Int J Adv Manuf Tech 61(1–4):379–390. doi:10.1007/s00170-011-3704-9

    Article  Google Scholar 

  10. Kim KJ, Lin DKJ (2000) Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions. J Roy Stat Soc C Appl 49:311–325. doi:10.1111/1467-9876.00194

    Article  MATH  MathSciNet  Google Scholar 

  11. Ramezani M, Bashiri M, Atkinson AC (2011) A goal programming-TOPSIS approach to multiple response optimization using the concepts of non-dominated solutions and prediction intervals. Expert Syst Appl 38(8):9557–9563. doi:10.1016/j.eswa.2011.01.139

    Article  Google Scholar 

  12. Hsu CM (2012) Applying genetic programming and ant colony optimisation to improve the geometric design of a reflector. Int J Syst Sci 43(5):972–986. doi:10.1080/00207721.2010.547627

    Article  Google Scholar 

  13. Salmasnia A, Kazemzadeh RB, Tabrizi MM (2012) A novel approach for optimization of correlated multiple responses based on desirability function and fuzzy logics. Neurocomputing 91:56–66. doi:10.1016/j.neucom.2012.03.001

    Article  Google Scholar 

  14. Hsu C-W, Chang C–C, Lin C-J (2008) A practical guide to support vector classification. http://www.csie.ntu.edu.tw/~cjlin

  15. Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intel 24(6):946–957. doi:10.1016/j.engappai.2011.03.009

    Article  Google Scholar 

  16. Szeto WY, Wu Y, Ho SC (2011) An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur J Oper Res 215(1):126–135. doi:10.1016/j.ejor.2011.06.006

    Article  Google Scholar 

  17. Cuevas E, Sencion-Echauri F, Zaldivar D, Perez-Cisneros M (2012) Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput 16(2):281–296. doi:10.1007/s00500-011-0741-0

    Article  Google Scholar 

  18. Karaboga D, Ozturk C, Karaboga N, Gorkemli B (2012) Artificial bee colony programming for symbolic regression. Inf Sci 209:1–15. doi:10.1016/j.ins.2012.05.002

    Article  Google Scholar 

  19. Boser B, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Proceedings of the 5th annual ACM workshop on computational learning theory. ACM Press, Pittsburgh, pp 144–152

    Google Scholar 

  20. Cortes C, Vapnik V (1995) Support-vector networks. Mache Learn 20(3):273–297. doi:10.1007/bf00994018

    MATH  Google Scholar 

  21. Guyon I, Boser B, Vapnik V (1993) Automatic capacity tuning of very large VC-dimension classifiers. In: Hanson SJ, Cowan JD, Giles CL (eds) Advances in neural information processing systems, vol 5., Morgan KaufmannSan Mateo, CA, pp 147–155

    Google Scholar 

  22. Schölkopf B, Burges C, Vapnik V (1995) Extracting support data for a given task. In: Fayyad U, Uthurusamy R (eds) Proceedings of first international conference on knowledge discovery and data mining. AAAI Press, Menlo Park, pp 252–257

    Google Scholar 

  23. Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge, pp 281–287

    Google Scholar 

  24. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge, pp 155–161

    Google Scholar 

  25. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  26. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  27. Karush W (1939) Minima of functions of several variables with inequalities as side constraints. Master thesis, University of Chicago, Chicago

  28. Kuhn H, Tucker A (1951) Nonlinear programming. In: Proceedings of the 2nd Berkeley symposium on mathematical statistics and probabilistics. University of California Press, Berkeley, pp 481–492

  29. Li DC, Liu CW, Fang YH, Chen CC (2010) A yield forecast model for pilot products using support vector regression and manufacturing experience-the case of large-size polariser. Int J Prod Res 48(18):5481–5496. doi:10.1080/00207540903100051

    Article  Google Scholar 

  30. Bi LZ, Tsimhoni O, Liu YL (2011) Using the support vector regression approach to model human performance. IEEE Trans Syst Man Cybern A 41(3):410–417. doi:10.1109/tsmca.2010.2078501

    Article  Google Scholar 

  31. Corazza A, Di Martino S, Ferrucci F, Gravino C, Mendes E (2011) Investigating the use of support vector regression for web effort estimation. Empir Softw Eng 16(2):211–243. doi:10.1007/s10664-010-9138-4

    Article  Google Scholar 

  32. Wang JJ, Li L, Niu DX, Tan ZF (2012) An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energ 94:65–70. doi:10.1016/j.apenergy.2012.01.010

    Article  Google Scholar 

  33. Tezcan J, Cheng Q (2012) Support vector regression for estimating earthquake response spectra. Bull Earthq Eng 10(4):1205–1219. doi:10.1007/s10518-012-9350-2

    Article  Google Scholar 

  34. Xin N, Gu XF, Wu H, Hu YZ, Yang ZL (2012) Application of genetic algorithm-support vector regression (GA-SVR) for quantitative analysis of herbal medicines. J Chemom 26(7):353–360. doi:10.1002/cem.2435

    Article  Google Scholar 

  35. Chevalier RF, Hoogenboom G, McClendon RW, Paz JA (2011) Support vector regression with reduced training sets for air temperature prediction: a comparison with artificial neural networks. Neural Comput Appl 20(1):151–159. doi:10.1007/s00521-010-0363-y

    Article  Google Scholar 

  36. Hong WC (2012) Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput Appl 21(3):583–593. doi:10.1007/s00521-010-0456-7

    Article  Google Scholar 

  37. Li GZ, Meng HH, Yang MQ, Yang JY (2009) Combining support vector regression with feature selection for multivariate calibration. Neural Comput Appl 18(7):813–820. doi:10.1007/s00521-008-0202-6

    Article  Google Scholar 

  38. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, New York

    Book  Google Scholar 

  39. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. doi:10.1023/b:stco.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  40. Kumar S (2005) Neural networks: a classroom approach. McGraw-Hill, Boston

    Google Scholar 

  41. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-TR06. Computer Engineering Department, Erciyes University

  42. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697. doi:10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  43. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin P, Castillo O, Aguilar LT, Kacprzyk J, Pedrycz W (eds) Foundations of fuzzy logic and soft computing, Proceedings, vol 4529, Lecture notes in computer science. Springer, Berlin, pp 789–798

  44. Yeh WC, Hsieh TJ (2012) Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation. Neural Comput Appl 21(2):365–375. doi:10.1007/s00521-010-0435-z

    Article  Google Scholar 

  45. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Int Syst Tech 2(3):27:21–27:27

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the National Science Council, Taiwan, ROC for supporting this research under Contract No. NSC 101-2221-E-159-009. He would also like to thank Raymond Huang for his invaluable assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ming Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CM. Application of SVR, Taguchi loss function, and the artificial bee colony algorithm to resolve multiresponse parameter design problems: a case study on optimizing the design of a TIR lens. Neural Comput & Applic 24, 1293–1309 (2014). https://doi.org/10.1007/s00521-013-1357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1357-3

Keywords

Navigation