Skip to main content
Log in

Human face recognition based on ensemble of polyharmonic extreme learning machine

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a classifier named ensemble of polyharmonic extreme learning machine, whose part weights are randomly assigned, and it is harmonic between the feedforward neural network and polynomial. The proposed classifier provides a method for human face recognition integrating fast discrete curvelet transform (FDCT) with 2-dimension principal component analysis (2DPCA). FDCT is taken to be a feature extractor to obtain facial features, and then these features are dimensionality reduced by 2DPCA to decrease the computational complexity before they are input to the classifier. Comparison experiments of the proposed method with some other state-of-the-art approaches for human face recognition have been carried out on five well-known face databases, and the experimental results show that the proposed method can achieve higher recognition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao W, Chellappa R, Rosenfeld A, Phillips PJ (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Google Scholar 

  2. Lewandowski M, Makris D, Nebel JC (2010) Automatic configuration of spectral dimensionality reduction methods. Pattern Recogn Lett 31:1720–1727

    Article  Google Scholar 

  3. Zhou H, Sadka AH (2011) Combining perceptual features with diffusion distance for face recognition. IEEE Trans Syst Man Cybern-Part C Appl Rev 41(5):577–588

    Article  Google Scholar 

  4. Lei Z, Liao SC, Pietikäinen M, Li SZ (2011) Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans Image Process 20(1):247–256

    Article  MathSciNet  Google Scholar 

  5. Al-Osaimi FR, Bennamoun M, Mian A (2012) Spatially optimized data-level fusion of texture and shape for face recognition. IEEE Trans Image Process 21(2):859–872

    Article  MathSciNet  Google Scholar 

  6. Kirby M, Sirovich L (1990) Application of the Karhunen–Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  7. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings CVPR, 1991, pp 586–591

  8. Feng GC, Yuen PC, Dai DQ (2000) Human face recognition using PCA on wavelet subband. J Electron Imaging 9(2):226–233

    Article  Google Scholar 

  9. Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neur Netw 13(6):1450–1464

    Google Scholar 

  10. Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using LDA-based algorithms. IEEE Trans Neur Netw 14(1):195–200

    Google Scholar 

  11. Schoelkopf B, Smola AJ, Mueller KR (1997) Kernel principal component analysis. Lect Notes Comput Sci 1327:583–588

    Article  Google Scholar 

  12. Yang J, Frangi AF, Yang J, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244

    Article  Google Scholar 

  13. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  14. Zhang D, Zhou ZH (2005) 2DTPCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69:224–231

    Article  Google Scholar 

  15. Ghazali KH, Mansor MF, Mustafa MM, Hussain A (2007) Feature extraction technique using discrete wavelet transform for image classification. In: Proccding of 5th student conference on research and development, Dec. 2007, pp 1–4

  16. Murtagh F, Starck JL (2008) Wavelet and curvelet moments for image classification: application to aggregate mixture grading. Pattern Recogn Lett 29:1557–1564

    Article  Google Scholar 

  17. Jemai O, Zaied M, Amar CB, Alimi AM (2010) FBWN: an architecture of fast Beta wavelet networks for image classification. In: Proccding of the 2010 international joint conference on neural networks (IJCNN), Barcelona, July, 2010, pp 1–8

  18. Hu HF (2011) Variable lighting face recognition using discrete wavelet transform. Pattern Recogn Lett 32:1526–1534

    Article  Google Scholar 

  19. Chen JT, Wu CC (2002) Discriminant waveletfaces and nearest feature classifers for face recognition. IEEE Trans Pattern Anal Mach Intell 24(2):1644–1649

    Google Scholar 

  20. Huang K, Aviyente S (2008) Wavelet feature selection for image classification. IEEE Trans Image Process 17(9):1709–1719

    Article  MathSciNet  Google Scholar 

  21. Zhang BL, Zhang H, Ge JS (2004) Face recognition by applying wavelet subband representation and kernel associative memory. IEEE Trans Neur Netw 15(1):166–177

    MathSciNet  Google Scholar 

  22. Zhao M, Li P, Liu Z (2008) Face recognition based on wavelet transform weighted modular PCA. In: Proceedings of the congress in image and signal processing, pp 589–593

  23. Donoho DL, Duncan MR (2000) Digital curvelet transform: strategy, implementation and experiments. In: Proceedings of the SPIE, vol 4056, pp 12–30

  24. Candès EJ, Demanet L, Donoho DL, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MATH  MathSciNet  Google Scholar 

  25. Cheng SS, Yang YB, Li YW (2007) Study on classification based on image fusion with curvelet transform. In: Proceedings of the SPIE, vol 6790, p 67900G. doi:10.1117/12.742231

  26. Sun AR, Tan YH (2007) Hyperspectral data classification using image fusion based on curvelet transform. In: Proceedings of the SPIE, vol 6787, p 678710. doi:10.1117/12.750049

  27. Mandal T, Wu QMJ, Yuan Y (2009) Curvelet based face recognition via dimension reduction. Signal Process 89(3):2345–2353

    Article  MATH  Google Scholar 

  28. Rowley HA, Baluja S, Kanade T (1998) Neural network-based face detection. IEEE Trans Pattern Anal Mach Intell 20(1):23–38

    Article  Google Scholar 

  29. Meng JE, Wu SQ, Lu JW, Toh HL (2002) Face recognition with radial basis function (RBF) neural networks. IEEE Trans Neur Netw 13(3):697–710

    Google Scholar 

  30. Ma L, Khorasani K (2004) Facial expression recognition using constructive feedforward neural networks. IEEE Trans Syst Man Cybern Part B Cybern 34(3):1588–1595

    Article  Google Scholar 

  31. Diego IM, Serrano A, Conde C, Cabello E (2010) Face verification with a kernel fusion method. Pattern Recogn Lett 31:837–844

    Article  Google Scholar 

  32. Sing JK, Thakur S, Basu DK, Nasipuri M, Kundu M (2009) High-speed face recognition using self-adaptive radial basis function neural networks. Neural Comput Appl 18:979–990

    Article  Google Scholar 

  33. Huang GB, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  34. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):261–271

    Article  Google Scholar 

  35. Wang XZ, Dong CR (2009) Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans Fuzzy Syst 17(3):556–567

    Article  Google Scholar 

  36. Wang XZ, Dong LC, Yan JH (2011) Maximum ambiguity based sample selection in fuzzy decision tree induction. IEEE Trans Knowl Data Eng. doi:10.1109/TKDE.2011.67

  37. Pan C, Park DS, Yang Y, Yoo HM (2012) Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput Appl 21(6):1217–1227

    Article  Google Scholar 

  38. Pan C, Park DS, Lu HJ, Wu XP (2012) Color image segmentation by fixation-based active learning with ELM. Soft Comput 16(9):1569–1584

    Article  Google Scholar 

  39. Zhou ZH, Zhao JW, Cao FL (2012) Surface reconstruction based on extreme learning machine. Neural Comput Appl. doi:10.1007/s00521-012-0891-8

  40. Wang XZ, Chen AX, Feng HM (2011) Upper integral network with extreme learning mechanism. Neurocomputing 74(16):2520–2525

    Article  Google Scholar 

  41. Wu J, Wang ST, Chung FL (2011) Positive and negative fuzzy rule system, extreme learning machine and image classification. Int J Mach Learn Cybern 2(4):261–271

    Article  Google Scholar 

  42. Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K (ed) Constructive theory of functions of several variables, No. 571 in Lecture Notes in mathematics. Springer, Berlin, pp 85–100

    Chapter  Google Scholar 

  43. Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications, vol 15. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The research was supported by the National Nature Science Foundation of China (No. 61101240, 61272023), the Zhejiang Provincial Natural Science Foundation of China (No. Y6110117), and the Science Foundation of Zhejiang Education Office (No. Y201122002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feilong Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Zhou, Z. & Cao, F. Human face recognition based on ensemble of polyharmonic extreme learning machine. Neural Comput & Applic 24, 1317–1326 (2014). https://doi.org/10.1007/s00521-013-1356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1356-4

Keywords

Navigation