Skip to main content
Log in

Multi-ellipses detection on images inspired by collective animal behavior

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel and effective technique for extracting multiple ellipses from an image. The approach employs an evolutionary algorithm to mimic the way animals behave collectively assuming the overall detection process as a multi-modal optimization problem. In the algorithm, searcher agents emulate a group of animals that interact with each other using simple biological rules which are modeled as evolutionary operators. In turn, such operators are applied to each agent considering that the complete group has a memory to store optimal solutions (ellipses) seen so far by applying a competition principle. The detector uses a combination of five edge points as parameters to determine ellipse candidates (possible solutions), while a matching function determines if such ellipse candidates are actually present in the image. Guided by the values of such matching functions, the set of encoded candidate ellipses are evolved through the evolutionary algorithm so that the best candidates can be fitted into the actual ellipses within the image. Just after the optimization process ends, an analysis over the embedded memory is executed in order to find the best obtained solution (the best ellipse) and significant local minima (remaining ellipses). Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pietrocew A (2003) Face detection in colour images using fuzzy Hough transform. Opto-Electron Rev 11(3):247–251

    Google Scholar 

  2. Toennies K, Behrens, F, Aurnhammer M. (2002). Feasibility of Hough-transform based iris localisation for real-time-application. In: Proceedings of the 16th international conference on pattern recognition

  3. Hardzeyeu V, Klefenz F (2008). On using the Hough transform for driving assistance applications. In: Proceedings of the fourth international conference on intelligent computer communication and processing

  4. Teutsch C, Berndt D, Trostmann E, Weber M (2006) Real-time detection of elliptic shapes for automated object recognition and object tracking. In: Proceedings of Machine Vision Applications in Industrial Inspection XIV, San Jose, CA, USA pp. 171–179

  5. Soetedjo A, Yamada K (2005) Fast and robust traffic sign detection. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, pp. 1341–1346

  6. Ho C-T, Chen L-H (1995) A fast ellipse/circle detector using geometric symmetry. Pattern Recognit 28(1):117–124

    Article  Google Scholar 

  7. Kuang CC, Nizar B, Djemel Z (2011). Quantization-free parameter space reduction in ellipse detection, Expert Systems with Applications 38: 7622–7632

    Google Scholar 

  8. Hough PVC (1962). Method and means for recognizing complex patterns. US Patent 3069654, December 18

  9. Wang CM, Hwang NC, Tsai YY, Chang CH (2004) Ellipse sampling for monte carlo applications. Electron Lett 40(1):21–22

    Article  Google Scholar 

  10. Wei Lu, Tan Jinglu (2008) Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT). Pattern Recognit 41:1268–1279

    Article  MATH  Google Scholar 

  11. McLaughlin RA (1998) Randomized Hough transform: improved ellipse detection with comparison. Pattern Recognit Lett 19(3–4):299–305

    Article  MATH  Google Scholar 

  12. Ayala-Ramirez V, Garcia-Capulin CH, Perez-Garcia A, Sanchez-Yanez RE (2006) Circle detection on images using genetic algorithms. Pattern Recognit Lett 27:652–657

    Article  Google Scholar 

  13. Lutton E, Martinez P (1994) A genetic algorithm for the detection of 2D geometric primitives in images. In: Proceedings of the 12th international conference on pattern recognition, Jerusalem, Israel 1:526–528

  14. Yao Jie, Kharma Nawwaf, Grogono Peter (2005) A multi-population genetic algorithm for robust and fast ellipse detection. Pattern Anal Appl 8:149–162

    Article  MathSciNet  Google Scholar 

  15. Cheng HD, Yanhui G, Yingtao Z (2009) A novel hough transform based on eliminating particle swarm optimization and its applications. Pattern Recognit 42(9):1959–1969

    Article  MATH  Google Scholar 

  16. Petalas YG, Antonopoulos CG, Bountis TC, Vrahatis MN (2009) Detecting resonances in conservative maps using evolutionary algorithms. Phys Lett A 373:334–341

    Article  MATH  Google Scholar 

  17. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization, In: Proceedings of the Second International Conference on Genetic Algorithms, ICGA, New Jersey

  18. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948

  19. Liang JJ, Qin AK, Suganthan PN (2006) Comprehensive learning particle swarm optimizer for global optimization of mult-modal functions. IEEE Transact Evol Comput 10(3):281–295

    Article  Google Scholar 

  20. Chen DB, Zhao CX (2009) Particle swarm optimization with adaptive population size and its application. Appl Soft Comput 9(1):39–48

    Article  Google Scholar 

  21. Xu Q, Lei W, Si J (2010) Predication based immune network for multimodal function optimization. Eng Appl Artif Intell 23:495–504

    Article  Google Scholar 

  22. Sumper D (2006) The principles of collective animal behaviour. Philos Trans R Soc Lond B Biol Sci 361(1465):5–22

    Article  Google Scholar 

  23. Petit O, Bon R (2010) Decision-making processes: the case of collective movements. Behav Process 84:635–647

    Article  Google Scholar 

  24. Kolpas A, Moehlis J, Frewen T, Kevrekidis I (2008) Coarse analysis of collective motion with different communication mechanisms. Math Biosci 214:49–57

    Article  MATH  MathSciNet  Google Scholar 

  25. Couzin I (2008) Collective cognition in animal groups. Trends Cognit Sci 13(1):36–43

    Article  Google Scholar 

  26. Couzin ID, Krause J (2003) Self-organization and collective behavior in vertebrates. Adv Stud Behav 32:1–75

    Article  Google Scholar 

  27. Bode N, Franks D, Wood A (2010) Making noise: emergent stochasticity in collective motion. J Theor Biol 267:292–299

    Article  MathSciNet  Google Scholar 

  28. Couzi I, Krause I, James R, Ruxton G, Franks N (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  Google Scholar 

  29. Couzin ID (2007) Collective minds. Nature 445:715–728

    Article  Google Scholar 

  30. Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18:735–739

    Article  Google Scholar 

  31. Hsu Y, Earley R, Wolf L (2006) Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol Rev 81(1):33–74

    Article  Google Scholar 

  32. Ballerini M (2008) Interaction ruling collective animal behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA 105:1232–1237

    Article  Google Scholar 

  33. Bresenham JE (1987) A linear algorithm for incremental digital display of circular arcs. Commun ACM 20:100–106

    Article  Google Scholar 

  34. Van Aken JR (2005) Efficient ellipse-drawing algorithm. IEEE Comp Gr Appl 4(9):24–35

    Article  Google Scholar 

  35. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  36. Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J Heurist. doi:10.1007/s10732-008-9080-4

    Google Scholar 

  37. J. Santamaría, O. Cordón, S. Damas, J.M. García-Torres, A. Quirin (2008). Performance Evaluation of Memetic Approaches in 3D Reconstruction of Forensic Objects. Soft Comput. doi: 10.1007/s00500-008-0351-7. in press

  38. Chen T-C, Chung K-L (2001) An efficient randomized algorithm for detecting circles. Comput Vis Image Underst 83:172–191

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, E., González, M., Zaldívar, D. et al. Multi-ellipses detection on images inspired by collective animal behavior. Neural Comput & Applic 24, 1019–1033 (2014). https://doi.org/10.1007/s00521-012-1332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1332-4

Keywords

Navigation