Neural Computing and Applications

, Volume 24, Issue 3–4, pp 755–764 | Cite as

Proximal parametric-margin support vector classifier and its applications

Original Article


As a development of powerful SVMs, the recently proposed parametric-margin ν-support vector machine (par-ν-SVM) is good at dealing with heteroscedastic noise classification problems. In this paper, we propose a novel and fast proximal parametric-margin support vector classifier (PPSVC), based on the par-ν-SVM. In the PPSVC, we maximize a novel proximal parametric-margin by solving a small system of linear equations, while the par-ν-SVM maximizes the parametric-margin by solving a quadratic programming problem. Therefore, our PPSVC not only is useful with the case of heteroscedastic noise but also has a much faster learning speed compared with the par-ν-SVM. Experimental results on several artificial and public available datasets show the advantages of our PPSVC both on the generalization ability and learning speed. Furthermore, we investigate the performance of the proposed PPSVC on the text categorization problem. The experimental results on two benchmark text corpora show the practicability and effectiveness of the proposed PPSVC.


Pattern classification Support vector machines Parametric-margin model Proximal classifier Text categorization 


  1. 1.
    Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297MATHGoogle Scholar
  2. 2.
    Mangasarian OL (1994) Nonlinear programming. SIAM, PhiladelphiaCrossRefMATHGoogle Scholar
  3. 3.
    Bi JB, Vapnik VN (2003) Learning with rigorous support vector machines. In: Learning theory and kernel machines. Springer Berlin/Heidelberg 2777, pp 243–257Google Scholar
  4. 4.
    Chang CC, Lin CJ (2001) Training ν-support vector classifiers: theory and algorithm. Neural Comput 13:2119–2147CrossRefMATHGoogle Scholar
  5. 5.
    Tian Y, Shi Y, Liu X (2012) Recent advances on support vector machines research. Technol Econ Dev Econ 18(1):5–33Google Scholar
  6. 6.
    Qi Z, Tian Y, Shi Y (2013) Robust twin support vector machine for pattern classification. Pattern Recognit 46(1):305–316Google Scholar
  7. 7.
    Shao YH, Chen WJ, Deng NY, Wang Z (2012) Improved generalized eigenvalue proximal support vector machine. IEEE Signal Process Lett. doi:10.1109/LSP.2012.2216874
  8. 8.
    Adankon M, Cheriet M (2010) Genetic algorithm-based training for semi-supervised SVM. Neural Comput Appl 19(8):1197–1206CrossRefGoogle Scholar
  9. 9.
    Lin T-C (2012) Decision-based filter based on SVM and evidence theory for image noise removal. Neural Comput Appl 21(4):695–703CrossRefGoogle Scholar
  10. 10.
    Guo P, Jiang Z, Lin S, Yao Y (2012) Combining LVQ with SVM technique for image semantic annotation. Neural Comput Appl 21(4):735–746CrossRefGoogle Scholar
  11. 11.
    Huang Y-L, Wang K-L, Chen D-R (2006) Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 15(2):164–169CrossRefGoogle Scholar
  12. 12.
    Taku K, Yuji M (2001) Chunking with support vector machines. Second meeting of the North American chapter of the association for computational linguistics on language technologies. MIT Press, Cambridge, MA, pp 1–8Google Scholar
  13. 13.
    Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Schökopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, MA, pp 185–208Google Scholar
  14. 14.
    Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10:1032–1037CrossRefGoogle Scholar
  15. 15.
    Joachims T (1998) Making large-scale SVM learning practical. In: Advances in Kernel methods-support vector learning. MIT Press, Cambridge, MA, pp 169–184Google Scholar
  16. 16.
    Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines.
  17. 17.
    Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of seventh international conference on knowledge and data discovery, San Francisco, pp 77–86Google Scholar
  18. 18.
    Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89:510–522CrossRefMATHGoogle Scholar
  19. 19.
    Hao PY, Tsai LB, Lin MS (2008) A new support vector classification algorithm with parametric-margin model. IEEE Int Jt Conf Neural Netw 420–425Google Scholar
  20. 20.
    Hao PY (2010) New support vector algorithms with parametric insensitive/margin model. Neural Netw 23:60–73CrossRefGoogle Scholar
  21. 21.
    Peng XJ (2011) TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn 44(10–11):2678–2692CrossRefMATHGoogle Scholar
  22. 22.
    Qi ZQ, Tian YJ, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53CrossRefMATHGoogle Scholar
  23. 23.
    Peng XJ, Xu D (2012) Geometric algorithms for parametric-margin ν-support vector machine. Neurocomputing doi:10.1016/j.neucom.2012.06.026
  24. 24.
    Lee YJ, Mangasarian OL (2001) RSVM: reduced support vector machines. First SIAM international conference on data mining. Chicago, IL, USA, pp 5–7Google Scholar
  25. 25.
    Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, Chichester, NYMATHGoogle Scholar
  26. 26.
    Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968CrossRefGoogle Scholar
  27. 27.
    Shao YH, Deng NY (2012) A novel margin based twin support vector machine with unity norm hyperplanes. Neural Comput Appl. doi:10.1007/s00521-012-0894-5
  28. 28.
    Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY (2012) An \(\varepsilon\)-twin support vector machine for regression. Neural Comput Appl. doi:10.1007/s00521-012-0924-3
  29. 29.
    Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATHGoogle Scholar
  30. 30.
    Shao YH, Deng NY (2013) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25:114–121CrossRefMATHGoogle Scholar
  31. 31.
    Shao YH, Wang Z, Chen WJ, Deng NY (2013) A regularization for the projection twin support vector machine. Knowl Based Syst 37:203–210Google Scholar
  32. 32.
  33. 33.
    Schölkopf B, Alexander JS, Alexander JS (1998) Advances in Kernel methods-support vector learning. MIT Press, MAMATHGoogle Scholar
  34. 34.
    Blake CL, Merz CJ (1998) UCI repository for machine learning databases.
  35. 35.
    Musicant DR (1998) NDC: normally distributed clustered datasets.
  36. 36.
    Zheng W, Qian Y, Lu H (2012) Text categorization based on regularization extreme learning machine. Neural Comput Appl 1–10Google Scholar
  37. 37.
    Joachims Thorsten (1998) Text categorization with support vector machines: learning with many relevant features. Machine Learning: ECML-98, 1398. Springer, Berlin/Heidelberg, pp 137–142Google Scholar
  38. 38.
  39. 39.
  40. 40.
  41. 41.
    Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137CrossRefGoogle Scholar
  42. 42.
    Weigend AS, Wiener ED, Pedersen JO (1999) Exploiting hierarchy in text categorization. Inf Retr 1(3):193–216CrossRefGoogle Scholar
  43. 43.
    Liao C, Alpha S, Dixon P (2007) UCI repository for machine learning databases. Technical Report, Oracle Corporation.
  44. 44.
    Arun Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRefGoogle Scholar
  45. 45.
    Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Mathematics CollegeJilin UniversityChangchunPeople’s Republic of China
  2. 2.Zhijiang CollegeZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations