Advertisement

Neural Computing and Applications

, Volume 24, Issue 3–4, pp 629–635 | Cite as

Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling

  • Mohammad Najafzadeh
  • Gholam-Abbas Barani
  • Hazi Mohammad Azamathulla
Original Article

Abstract

In the present study, the Group method of data handling (GMDH) network was utilized to predict the scour depth below pipelines. GMDH network was developed using back propagation. Input parameters that were considered as effective parameters on the scour depth included those of sediment size, geometry of pipeline, and approaching flow characteristics. Training and testing performances of the GMDH networks have been carried out using nondimensional data sets that were collected from the literature. These data sets are related to the two main situations of pipelines scour experiments namely clear-water and live-bed conditions. The testing results of performances were compared with the support vector machines (SVM) and existing empirical equations. The GMDH network indicated that using of back propagation produced lower error of scour depth prediction than those obtained using the SVM and empirical equations. Also, the effects of many input parameters on the scour depth have been investigated.

Keywords

Pipeline Scour depth Live-bed and clear-water condition Group method of data handling 

References

  1. 1.
    Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. J Energy Conserv Manag 49(10):2588–2594CrossRefGoogle Scholar
  2. 2.
    Azamathulla HMd, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng ASCE 131(10):898–908CrossRefGoogle Scholar
  3. 3.
    Azamathulla HMd, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 38(8):689–698CrossRefGoogle Scholar
  4. 4.
    Azamathulla HMd, Ghani AA, Zakaria NA, Guven A (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng ASCE 136(3):165–169CrossRefGoogle Scholar
  5. 5.
    Azamathulla HMd, Guven A, Demir YK (2011) Linear genetic programming to scour below submerged pipeline. Ocean Eng 38(8–9):995–1000CrossRefGoogle Scholar
  6. 6.
    Azamathulla HMd, Zakaria NA (2011) Prediction of scour below submerged pipeline crossing a river using ANN. IWA Water Sci Technol 63(10):2225–2230CrossRefGoogle Scholar
  7. 7.
    Ayoubloo MK, Azamathulla HMd, Jabbari E, Mahjoobi J (2011) Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows. Expert Syst Appl 38(8):10114–10123CrossRefGoogle Scholar
  8. 8.
    Brørs B (1999) Numerical modeling of flow and scour at pipelines. J Hydraul Eng 125–5:511–523CrossRefGoogle Scholar
  9. 9.
    Campbell C (2000) Kernel methods: a survey of current techniques. Neurocomputing 48:63–84CrossRefGoogle Scholar
  10. 10.
    Chao JL, Hennessy PV (1972) Local scour under ocean outfall pipe-lines. Water Pollut Control Federation 44(7):1443–1447Google Scholar
  11. 11.
    Chiew YM (1991) Prediction of maximum scour depth at submarine pipelines. J Hydraul Eng 117(4):452–466CrossRefGoogle Scholar
  12. 12.
    Chiew YM (1990) Mechanics of local scour around submarine pipelines. J Hydraul Eng 116–4:515–529CrossRefGoogle Scholar
  13. 13.
    Dey S, Singh NP (2007) Clear-water scour depth below underwater pipelines. J Hydro-Environ Res 1:157–162CrossRefGoogle Scholar
  14. 14.
    Debnath K, Chaudhuri S (2010) Laboratory experiments on local scour around cylinder for clay and clay–sand mixed beds. Eng Geol 111(12):51–61CrossRefGoogle Scholar
  15. 15.
    Dey S, Singh NP (2008) Clear-water scour below underwater pipelines under steady flow. J Hydraul Eng 134(5):588–600CrossRefGoogle Scholar
  16. 16.
    Ettema R (1980) Scour at bridge piers. Report No. 216, Deptartment of Civil Engineering, University of Auckland, Auckland, New ZealandGoogle Scholar
  17. 17.
    Ettema R, Melville BW, Barkdoll B (1998) Scale effect in pier-scour experiments. J Hydraul Eng 124(6):639–642CrossRefGoogle Scholar
  18. 18.
    Etemad-Shahidi A, Yasa R, Kazeminezhad MH (2011) Prediction of wave-induced scour depth under submarine pipelines using machine learning approach. Appl Ocean Res 33:54–59CrossRefGoogle Scholar
  19. 19.
    Farlow SJ (ed) (1984) Self-organizing method in modeling: GMDH type algorithm. Marcel Dekker Inc, New YorkGoogle Scholar
  20. 20.
    Guven A, Azamathulla HMd (2012) Gene-expression programming for flip bucket spillway scour. Water Sci Technol 65(11):1982–1987CrossRefGoogle Scholar
  21. 21.
    Guven A, Azamathulla HMd, Gunal M (2012) A comparative study of predicting scour around a circular pile. ICE Marit Eng 165(1):31–40CrossRefGoogle Scholar
  22. 22.
    Guven A, Azamathulla HMd, Zakaria NA (2009) Linear genetic programming for prediction of circular pile scour. J Ocean Eng 36(12–13):985–991CrossRefGoogle Scholar
  23. 23.
    Guven A, Gunal M (2008) Genetic programming approach for prediction of local scour downstream hydraulic structures. J Irrig Drain Eng 134(2):241–249CrossRefGoogle Scholar
  24. 24.
    Guven A, Aytek A, Yuce MI, Aksoy H (2008) Genetic programming based empirical model for daily reference evapotranspiration estimation. Clean-Soil Air Water 36(10–11):905–912CrossRefGoogle Scholar
  25. 25.
    Guven A (2009) Linear genetic programming for time series modelling of daily flow rate. J Earth Syst Sci 118(2):137–146CrossRefGoogle Scholar
  26. 26.
    Hansen EA, Fredsøe J, Ye M (1986) Two-dimensional scour below pipelines. In: Proceedings of 5th international symposium on offshore mechanics and arctic engineering, pp 670–678Google Scholar
  27. 27.
    Ibrahim A, Nalluri C (1986) Scour prediction around marine pipelines. In: Proceedings of the 5th international symposium on offshore mechanics and arctic engineering, pp 679–684Google Scholar
  28. 28.
    Iba H, de Garis H (1996) Extending genetic programming with recombinative guidance. In: Angeline P, Kinnear K (eds) Advances in genetic programming 2. MIT Press, CambridgeGoogle Scholar
  29. 29.
    Ivahnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern SMC-1, pp 364–378Google Scholar
  30. 30.
    Johnson PA (1992) Reliability-based pier scour engineering. J Hydraul Eng ASCE 118(10):1344–1357CrossRefGoogle Scholar
  31. 31.
    Kalantary F, Ardalan H, Nariman-Zadeh N (2009) An investigation on the Su-NSPT correlation using GMDH type neural networks and genetic algorithms. Eng Geol 104(1–2):144–155CrossRefGoogle Scholar
  32. 32.
    Kisi Ö, Guven A (2010) A machine code-based genetic programming for suspended sediment concentration estimation. Adv Eng Softw 41(7–8):939–945CrossRefzbMATHGoogle Scholar
  33. 33.
    Kjeldsen SP, Gjørsvik O, Bringaker KG, Jacobsen J (1973) Local scour near offshore pipelines. In: Proceedings of the 2nd international conference on port and ocean engineering under arctic conditions, University of Iceland, pp 308–331Google Scholar
  34. 34.
    Li F, Cheng L (1999) Numerical model for local scour under offshore pipelines. J Hydraul Eng 125(4):400–406CrossRefGoogle Scholar
  35. 35.
    Madala HR, Ivakhnenko AG (1994) Inductive learning algorithms for complex systems modeling. CRC Press, Boca RatonzbMATHGoogle Scholar
  36. 36.
    Maza JA (1987) Introduction to river engineering. Advanced course on water resources management. Universitá Italiana per Stranieri, PerugiaGoogle Scholar
  37. 37.
    Myrhaug D, Rue H (2003) Scour below pipelines and around vertical piles in random waves. Coast Eng 48(4):227–242CrossRefGoogle Scholar
  38. 38.
    Myrhaug D, Ong MC, Føien H, Gjengedal C, Leira BJ (2009) Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng 36:605–616CrossRefGoogle Scholar
  39. 39.
    Mehrara M, Moeini A, Ahrari M, Erfanifard A (2009) Investigating the efficiency in oil futures market based on GMDH approach. Expert Syst Appl 36(4):7479–7483CrossRefGoogle Scholar
  40. 40.
    Moncada-M AT, Aguirre-Pe J (1999) Scour below pipeline in river crossings. J Hydraul Eng 125(9):953–958CrossRefGoogle Scholar
  41. 41.
    Melville BW (1984) Live-bed scour at bridge piers. J Hydraul Eng ASCE 110(9):1234–1247CrossRefGoogle Scholar
  42. 42.
    Najafzadeh M (2009) Experimental and numerical study of local scour around a vertical pier in cohesive soils, Ms. Thesis, Shahid Bahonar University, Kerman, IranGoogle Scholar
  43. 43.
    Najafzadeh M, Barani Gh-A (2011) Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Scientia Iranica Trans A Civil Eng 18(6):1207–1213CrossRefGoogle Scholar
  44. 44.
    Najafzadeh M, Barani G-A (2012) Discussion of “Genetic programming to predict river pipeline scour” by HMd Azamathulla and Aminuddin, Ab Ghani. J Pipeline Syst Eng Pract ASCEGoogle Scholar
  45. 45.
    Najafzadeh M, Azamathulla HM (2012) Group method of data handling to predict scour depth around bridge piers. Neural Comput Appl. doi: 10.1007/S00521-021-1160-6
  46. 46.
    Najafzaded M, Barani G-A, Hessami Kermani MR (2012) Abutment scour in clear-water and live-bed conditions by GMDH network. Water Sci Technol. doi: 10.2166/wst.2012.670
  47. 47.
    Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh GR (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proc Inst Mech Eng Part B J Eng Manuf 217:779–790CrossRefGoogle Scholar
  48. 48.
    Onwubolu GC (2008) Design of hybrid differential evolution and group method in data handling networks for modeling and prediction. Inform Sci 178:3618–3634CrossRefGoogle Scholar
  49. 49.
    Sanchez E, Shibata T, Zadeh LA (1997) Genetic algorithms and fuzzy logic systems. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  50. 50.
    Sakaguchi A, Yamamoto T (2000) A GMDH network using back propagation and its application to a controller design. J IEEE 4:2691–2697Google Scholar
  51. 51.
    Sheppard DM, Miller W (2006) Live-bed local pier scour experiments. J Hydraul Eng 132(7):635–642CrossRefGoogle Scholar
  52. 52.
    Srinivasan D (2008) Energy demand prediction using GMDH networks. Neuro Comput 72(1–3):625–629Google Scholar
  53. 53.
    Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Statis Comput 14(3):199–222CrossRefMathSciNetGoogle Scholar
  54. 54.
    Toth E, Brandimarte L (2011) Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks. J Hydroinform 13(4):812–824CrossRefGoogle Scholar
  55. 55.
    Vapnik VN (1995) The nature of statistical learning theory. Springer, New YorkCrossRefzbMATHGoogle Scholar
  56. 56.
    Witczak M, Korbicz J, Mrugalski M, Patton R (2006) A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Eng Pract 14(6):671–683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Mohammad Najafzadeh
    • 1
  • Gholam-Abbas Barani
    • 1
  • Hazi Mohammad Azamathulla
    • 2
  1. 1.Department of Civil EngineeringShahid Bahonar UniversityKermanIran
  2. 2.River Engineering and Urban Drainage Research Centre (REDAC)Universiti Sains MalaysiaPenangMalaysia

Personalised recommendations