Skip to main content
Log in

Integrating adaptive neuro-fuzzy inference system and local binary pattern operator for robust retinal blood vessels segmentation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Automatic extraction of blood vessels is an important step in computer-aided diagnosis in ophthalmology. The blood vessels have different widths, orientations, and structures. Therefore, the extracting of the proper feature vector is a critical step especially in the classifier-based vessel segmentation methods. In this paper, a new multi-scale rotation-invariant local binary pattern operator is employed to extract efficient feature vector for different types of vessels in the retinal images. To estimate the vesselness value of each pixel, the obtained multi-scale feature vector is applied to an adaptive neuro-fuzzy inference system. Then by applying proper top-hat transform, thresholding, and length filtering, the thick and thin vessels are highlighted separately. The performance of the proposed method is measured on the publicly available DRIVE and STARE databases. The average accuracy 0.942 along with true positive rate (TPR) 0.752 and false positive rate (FPR) 0.041 is very close to the manual segmentation rates obtained by the second observer. The proposed method is also compared with several state-of-the-art methods. The proposed method shows higher average TPR in the same range of FPR and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269

    Article  Google Scholar 

  2. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  3. Niemeijer M, Staal JJ, VanGinneken B, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database, SPIEMed. Imaging 5370:648–656

    Google Scholar 

  4. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727

    Article  Google Scholar 

  5. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4–5):198–211

    Article  Google Scholar 

  6. Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019

    Article  MATH  Google Scholar 

  7. Matsopoulos GK, Asvestas PA, Delibasis KK, Mouravliansky NA, Zeyen TG (2008) Detection of glaucomatous change based on vessel shape analysis. Comput Med Imaging Graph 32(3):183–192

    Article  Google Scholar 

  8. Lin T, Zheng Y (2003) Node-matching-based pattern recognition method for retinal blood vessel images. Opt Eng 42(11):3302–3306

    Article  Google Scholar 

  9. Jiang X, Mojon D (2003) Adaptive local thresholding by verification based multi threshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137

    Article  Google Scholar 

  10. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40:438–445

    Article  Google Scholar 

  11. Narasimha-Iyer H, Mahadevan V, Beach JM, Roysam B (2008) Improved detection of the central reflex in retinal vessels using a generalized dual-Gaussian model and robust hypothesis testing. IEEE Trans Inf Technol Biomed 12(3):406–410

    Article  Google Scholar 

  12. Zhou L, Rzeszotarsk MS, Singerman LJ, Chokreff JM (1994) The detection and quantification of retinopathy using digital angiograms. IEEE Trans Med Imaging 13(4):619–626

    Article  Google Scholar 

  13. Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N (2010) Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed. doi:10.1016/j.cmpb.2010.03.004

    Google Scholar 

  14. Adel M, Moussaoui A, Rasigni M, Bourennane S, Hamami L (2010) Statistica-based tracking technique for linear structures detection: application to vessel segmentation in medical images. IEEE Signal Process Lett 17(6):555–558

    Article  Google Scholar 

  15. Vlachos M, Dermatas E (2010) Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Graph 34(3):213–227

    Article  Google Scholar 

  16. Perfetti R, Ricci E, Casali D, Costantini G (2007) Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans Circuits Syst II 54:141–145

    Article  Google Scholar 

  17. Soares JVB, Leandro JJG, CesarJr RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222

    Article  Google Scholar 

  18. Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, VanGinneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  19. Supot S, Thanapong C, Chuchart P, Manas S (2007) Automatic segmentation of blood vessels in retinal images based on Fuzzy K-Median clustering, in: Proceedings of the IEEE International Conference on Integration Technology. Shenzhen, China, pp 584–588

    Google Scholar 

  20. Garg S, Sivaswamy J, Chandra S (2007) Unsupervised curvature-based retinal vessel segmentation. In: Proceedings of the IEEE international symposium on bio-medical imaging pp 344–347

  21. Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213

    Article  Google Scholar 

  22. Palomera-Perez MA, Martinez-Perez ME, Benitez-Perez H, Ortega-Arjona JL (2010) Parallel Multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans Inf Technol Biomed 14(2):500–506

    Article  Google Scholar 

  23. Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11(1):47–61

    Article  Google Scholar 

  24. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  25. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Upper Saddle River, Prentice Hall

  26. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  27. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distribution. Pattern Recogn 29:51–59

    Article  Google Scholar 

  28. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  29. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  30. Nanni L, Lumini A (2008) Local binary patterns for a hybrid fingerprint matcher. Pattern Recogn 41:3461–3466

    Article  MATH  Google Scholar 

  31. Lucieer A, Stein A, Fisher P (2005) Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty. Int J Remote Sens 26(14):2917–2936

    Article  Google Scholar 

  32. Fathi A, Naghsh-Nilchi AR (2012) Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognit Lett 33:1093–1100

    Article  Google Scholar 

  33. Otsu N (1979) A threshold selection method from Gray-Level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  34. http://www.isi.uu.nl/Research/Databases/DRIVE/results.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhossein Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, A., Naghsh-Nilchi, A.R. Integrating adaptive neuro-fuzzy inference system and local binary pattern operator for robust retinal blood vessels segmentation. Neural Comput & Applic 22 (Suppl 1), 163–174 (2013). https://doi.org/10.1007/s00521-012-1118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1118-8

Keywords

Navigation