Skip to main content
Log in

L-information systems and complete L-lattices

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the relationship between complete L-lattices and L-closure systems is investigated first. That is, each L-closure system is a complete L-lattice under the fuzzy inclusion order, and each complete L-lattice is isomorphic to an L-closure system. Next, we focus on information systems in fuzzy setting and propose the concept of L-information systems from the viewpoint of fuzzy logic. The cheerful result that L-information systems are a representation of complete L-lattices is presented. Furthermore, we define appropriate morphisms on L-information systems and complete L-lattices, respectively, and prove that they are categorically equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajmal N, Thomas KV (1994) Fuzzy lattice. Inf Sci 79:271–291

    Article  MathSciNet  MATH  Google Scholar 

  2. Bělohlávek R (2001) Fuzzy closure operators. J Math Anal Appl 262:473–489

    Article  MathSciNet  MATH  Google Scholar 

  3. Bělohlávek R (2002) Fuzzy closure operators II: induced relations, representation, and examples. Soft Comput 7:53–64

    Article  MATH  Google Scholar 

  4. Bělohlávek R (2002) Fuzzy relational systems: foundation and principles. Kluwer/Plenum Pless, New York

    Book  Google Scholar 

  5. Bělohlávek R (2004) Concept lattices and order in fuzzy logic. Ann Pure Appl Log 128:277–298

    Article  MATH  Google Scholar 

  6. Biacino L, Gerla G (1998) Logics with approximate premise. Int J Intell Syst 13:1–10

    Article  MATH  Google Scholar 

  7. Boixader D, Jacas J (1998) Extensionality based approximate reasoning. Int J Approx Reason 19:221–230

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro JL, Trillas E, Cubillo S (1994) On consequence in approximate reasoning. J Appl Non-Class Log 4:91–103

    Article  MathSciNet  MATH  Google Scholar 

  9. Demirci M (2005) A theory of vague lattice based on many-valued equivalence relations I: general representation results. Fuzzy Sets Syst 151:437–472

    Article  MathSciNet  MATH  Google Scholar 

  10. Demirci M (2005) A theory of vague lattice based on many-valued equivalence relations II: complete lattices. Fuzzy Sets Syst 151:473–489

    Article  MathSciNet  MATH  Google Scholar 

  11. Esteva F, García P, Godo L, Rodríguez R (2003) On implicative closure operators in approximate reasoning. Int J Approx Reason 33:159–184

    Article  MATH  Google Scholar 

  12. Fan L (2001) A new approach to quantitative domain theory. Electron Notes Theor Comput Sci 45:77–87

    Article  Google Scholar 

  13. Gerla G (2001) Fuzzy control as a fuzzy deduction system. Fuzzy Sets Syst 121:409–425

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo L-K, Zhang G-Q, Li Q-G (2011) Fuzzy closure systems on L-ordered sets. Math Log Q 57:281–291

    Article  MathSciNet  MATH  Google Scholar 

  15. Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  16. Hoofman R (1993) Continuous information systems. Inf Comput 105:42–71

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelly GM (1982) Basic concepts of enriched category theory, London Mathematical Society Lecture Notes Series 64. Cambridge University Press, Cambridge

    Google Scholar 

  18. Lai H-L, Zhang D-X (2006) Fuzzy preorder and fuzzy topology. Fuzzy Sets Syst 157:1865–1885

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai H-L, Zhang D-X (2007) Complete and directed complete -categories. Theoret Comput Sci 388:1–25

    Article  MathSciNet  MATH  Google Scholar 

  20. Lai H-L, Zhang D-X (2009) Concept lattice of fuzzy context: formal concept analysis vs. rough set theory. Int J Approx Reason 50:695–707

    Article  MathSciNet  MATH  Google Scholar 

  21. Mac Lane S (1971) Categories for the working mathematician. Springer, New York

    Book  MATH  Google Scholar 

  22. Scott DS (1982) Domains for denotational semantics. Lect Notes Comput Sci 140:577–643

    Article  Google Scholar 

  23. Spreen D, Xu L-S, Mao X-X (2008) Information systems revisited—the general continuous case. Theoret Comput Sci 405:176–187

    Article  MathSciNet  MATH  Google Scholar 

  24. Stubbe I (2005) Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl Categ 14:1–45

    MathSciNet  MATH  Google Scholar 

  25. Stubbe I (2006) Categorical structures enriched in a quantaloid: tensored and contensored categories. Theory Appl Categ 16:283–306

    MathSciNet  MATH  Google Scholar 

  26. Tepavčevič A, Trajkovski G (2001) L-fuzzy lattices: an introduction. Fuzzy Sets Syst 123:209–216

    Article  MATH  Google Scholar 

  27. Wagner KR (1994) Solving recursive domain equations with enriched categories, Ph.D. Thesis. Carnegie Mellon University, Technical Report CMU-CS-94-159

  28. Ward M, Dilworth RP (1939) Residuated lattices. Trans Am Math Soc 45:335–354

    Article  MathSciNet  Google Scholar 

  29. Yao W (2009) L-fuzzy Scott topology and Scott convergence of stratified L-filters on fuzzy dcpos. Electron Notes Theor Comput Sci 257:135–152

    Article  Google Scholar 

  30. Yao W (2010) Quantitative domains via fuzzy sets: part I: continuity of fuzzy directed complete posets. Fuzzy Sets Syst 161:873–987

    Google Scholar 

  31. Ying M-S (1994) A logic for approximate reasoning. J Symb Log 59:830–837

    Article  MATH  Google Scholar 

  32. Zadeh LA (1971) Similarity relations and fuzzy orderings. Inf Sci 3:177–200

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang G-Q (1992) DI-domains as prime information system. Inf Comput 100:151–177

    Article  MATH  Google Scholar 

  34. Zhang Q-Y, Fan L (2005) Continuity in quantitative domains. Fuzzy Sets Syst 154:118–131

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang Q-Y, Fan L (2006) A kind of L-fuzzy complete lattice and adjoint functor theorem for LF-Poset, Report on the Fourth International Symposium on Domain Theory. Hunan University, Changsha

    Google Scholar 

  36. Zhang Q-Y, Xie W-X, Fan L (2009) Fuzzy complete lattices. Fuzzy Sets Syst 160:2275–2291

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NO. 11071061), the National Basic Research Program (NO. 2011CB311808) and Hunan Provincial Innovation Foundation for Postgraduate (NO. CX2011B158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Li, Q. & Zhou, X. L-information systems and complete L-lattices. Neural Comput & Applic 23, 1139–1147 (2013). https://doi.org/10.1007/s00521-012-1060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1060-9

Keywords

Navigation