Skip to main content

Advertisement

Log in

An efficient iterated method for mathematical biology model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The purpose of this study is to introduce an efficient iterated homotopy perturbation transform method (IHPTM) for solving a mathematical model of HIV infection of CD4+ T cells. The equations are Laplace transformed, and the nonlinear terms are represented by He’s polynomials. The solutions are obtained in the form of rapidly convergent series with elegantly computable terms. This approach, in contrast to classical perturbation techniques, is valid even for systems without any small/large parameters and therefore can be applied more widely than traditional perturbation techniques, especially when there do not exist any small/large quantities. A good agreement of the novel method solution with the existing solutions is presented graphically and in tabulated forms to study the efficiency and accuracy of IHPTM. This study demonstrates the general validity and the great potential of the IHPTM for solving strongly nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nowak M, May R (1991) Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math Biosci 106:1–21

    Article  MATH  Google Scholar 

  2. Perelson AS, Kirschner DE, Boer RD (1993) Dynamics of HIV infection CD4+ T cells. Math Biosci 114:81–125

    Article  MATH  Google Scholar 

  3. Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang L, Li MY (2006) Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math Biosci 200:44–57

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghotbi AR, Barari A, Omidvar M, Domairry G (2011) Application of homotopy perturbation and variational iteration methods to SIR epidemic model. Journal of Mechanics in Medicine and Biology 11:149–161

    Article  Google Scholar 

  6. Merdan M (2007) Homotopy perturbation method for solving a model for HIV infection of CD4+ T cells. Istanbul Commer Uni J Sci 12:39–52

    Google Scholar 

  7. Ongun MY (2011) The Laplace adomian decomposition method for solving a model for HIV infection of CD4+ T cells. Math Comput Model 53:597–603

    Article  MathSciNet  MATH  Google Scholar 

  8. Merdan M, Gökdoğan A, Yildirim A (2011) On the numerical solution of the model for HIV infection of CD4+ T cells. Comput Math Appl 62:118–123

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghoreishi M, Md. Ismail AIB, Alomari AK (2011) Application of the homotopy analysis method for solving a model for HIV infection of CD4+ T-cells. Math Comput Model 54:3007–3015

    Article  MATH  Google Scholar 

  10. Gökdoğan A, Yildirim A, Merdan M (2011) Solving a fractional order model of HIV infection of CD4+ T cells. Math Comput Model 54:2132–2138

    Article  MATH  Google Scholar 

  11. Koçak H, Yildirim A (2011) An efficient algorithm for solving nonlinear age-structured population models by combining Homotopy perturbation and Padé techniques. Int J Comput Math 8:491–500

    Article  Google Scholar 

  12. Lashari AA, Zaman G (2012) Optimal control of a vector borne disease with horizontal transmission. Nonlinear Anal Real World Appl 13:203–212

    Article  MathSciNet  MATH  Google Scholar 

  13. Lashari AA, Zaman G (2011) Global dynamics of vector-borne diseases with horizontal transmission in host population. Comput Math Appl 61:745–754

    Article  MathSciNet  MATH  Google Scholar 

  14. Yousfi N, Hattaf K, Tridane A (2011) Modeling the adaptive immune response in HBV infection. J Math Biol 63:933–957

    Article  MathSciNet  MATH  Google Scholar 

  15. Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer, Boston

    Book  MATH  Google Scholar 

  16. Šmarda Z, Archalousova O (2010) Adomian decomposition method for certain singular initial value problems II. J Appl Math 3:91–98

    Google Scholar 

  17. Khan RA, Usman M (2012) Eventual periodicity of forced oscillations of the Korteweg-de Vries type equation. Appl Math Modell 36:736–742

    Article  MathSciNet  MATH  Google Scholar 

  18. Khan Y, Wu Q, Faraz N, Yildirim A, Wu Q, Mohyud-Din ST (2011) Three-dimensional flow arising in the long porous slider: an analytic solution. Zeitschriftfuer Naturforschung A 66a:507–511

    Google Scholar 

  19. Khan Y (2009) An effective modification of the Laplace decomposition method for nonlinear equations. Int J Nonlinear Sci Num Simul 10:1373–1376

    Google Scholar 

  20. Khan Y, Austin F (2010) Application of the Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations. Zeitschriftfuer Naturforschung A 65a:849–853

    Google Scholar 

  21. He JH, Wu GC, Austin F (2010) The variational iteration method which should be followed. Nonlinear Sci Lett A 1:1–30

    Google Scholar 

  22. Turkyilmazoglu M (2011) An optimal variational iteration method. Appl Math Lett 24:762–765

    Article  MathSciNet  MATH  Google Scholar 

  23. Barari A, Omidvar M, Ghotbi AR, Ganji DD (2008) Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Applicanda Mathematicae 104:161–171

    Google Scholar 

  24. Khan Y, Faraz N, Yildirim A, Wu Q (2011) A series solution of the long porous slider. Tribol Trans 54:187–191

    Article  Google Scholar 

  25. Ganji SS, Barari A, Ganji DD (2011) Approximate analysis of two-mass—spring systems and buckling of a column. Comput Math Appl 61:1088–1095

    Article  MathSciNet  MATH  Google Scholar 

  26. Turkyilmazoglu M (2011) Convergence of the homotopy perturbation method. Int J Nonlinear Sci Num Simul 12:9–14

    Article  Google Scholar 

  27. Turkyilmazoglu M (2011) An optimal analytic approximate solution for the limit cycle of Duffing-van der Pol equation. J Appl Mech Trans ASME 78:021005

    Article  Google Scholar 

  28. Turkyilmazoglu M (2011) Some issues on HPM and HAM methods: a convergence scheme. Math Comput Model 53:1929–1936

    Article  MathSciNet  MATH  Google Scholar 

  29. Ghasemi E, Soleimani S, Barari A, Bararnia H, Domairry G (2012) Influence of uniform suction/injection on heat transfer of MHD Hiemenz flow in porous media. J Eng Mech ASCE 138:82–88

    Article  Google Scholar 

  30. Zhang Z (2008) New exact traveling wave solutions for the Nonlinear Klein-Gordon equation. Turk J Phys 32:235–240

    Google Scholar 

  31. Zhang Z, Li Y, Liu Z, Miao X (2011) New exact solutions to the perturbed nonlinear Schrodinger’s equation with Kerr law non-linearity via modified trigonometric function series method. Commun Nonlinear Sci Numer Simul 16:3097–3106

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Z, Liu Z, Miao X, Chen Y (2010) New exact solutions to the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity. Appl Math Comput 216:3064–3072

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang Z, Liu Z, Miao X, Chen Y (2011) Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity. Phys Lett A 375:1275–1280

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang Z, Gan X, Yu D (2011) Bifurcation behavior of the traveling wave solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Z Naturforsch 66a:721–727

    Google Scholar 

  35. Miao X, Zhang Z (2011) The modified (G′/G)-expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity. Commun Nonlinear Sci Numer Simul 16:4259–4267

    Article  MathSciNet  MATH  Google Scholar 

  36. Khan Y, Wu Q (2011) Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput Math Appl 61:1963–1967

    Article  MathSciNet  MATH  Google Scholar 

  37. Khan Y, Mohyud-Din ST (2010) Coupling of He’s polynomials and Laplace transformation for MHD viscous flow over a stretching sheet. Int J Nonlin Sci Num Simul 11:1103–1107

    Google Scholar 

  38. Ghorbani A, Saberi-Nadjafi J (2007) He’s homotopy perturbation method for calculating adomian polynomials. Int J Nonlin Sci Num Simul 8:229–232

    Google Scholar 

  39. Ghorbani A (2009) Beyond Adomian’s polynomials: the polynomials. Chaos, Solitons Fractals 39:1486–1492

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their cordial thanks to the anonymous referees for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Y., Vázquez-Leal, H. & Wu, Q. An efficient iterated method for mathematical biology model. Neural Comput & Applic 23, 677–682 (2013). https://doi.org/10.1007/s00521-012-0952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0952-z

Keywords

Navigation