Neural Computing and Applications

, Volume 23, Issue 1, pp 175–185

An ε-twin support vector machine for regression

Original Article

Abstract

This study proposes a new regressor—ε-twin support vector regression (ε-TSVR) based on TSVR. ε-TSVR determines a pair of ε-insensitive proximal functions by solving two related SVM-type problems. Different form only empirical risk minimization is implemented in TSVR, the structural risk minimization principle is implemented by introducing the regularization term in primal problems of our ε-TSVR, yielding the dual problems to be stable positive definite quadratic programming problems, so can improve the performance of regression. In addition, the successive overrelaxation technique is used to solve the optimization problems to speed up the training procedure. Experimental results for both artificial and real datasets show that, compared with the popular ε-SVR, LS-SVR and TSVR, our ε-TSVR has remarkable improvement of generalization performance with short training time.

Keywords

Machine learning Support vector machines Regression Twin support vector machine Successive overrelaxation 

References

  1. 1.
    Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297MATHGoogle Scholar
  2. 2.
    Vapnik VN (1998) Statistical learning theory. Wiley, New YorkMATHGoogle Scholar
  3. 3.
    Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167CrossRefGoogle Scholar
  4. 4.
    Deng NY, Tian YJ, Zhang CH (2012) Support vector machines: theory, algorithms, and extensions. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Noble WS (2004) Support vector machine applications in computational biology. In: Schöelkopf B, Tsuda K, Vert J-P (eds) Kernel methods in computational biology. MIT Press, Cambridge, pp 71–92Google Scholar
  6. 6.
    Lee S, Verri A (2002) Pattern recognition with support vector machines. In: First international workshop, Springer, Niagara Falls, CanadaGoogle Scholar
  7. 7.
    Ince H, Trafalis TB (2002) Support vector machine for regression and applications to financial forecasting. In: International joint conference on neural networks, Como, Italy, IEEE-INNS-ENNSGoogle Scholar
  8. 8.
    Suykens JAK, Lukas L, van Dooren P, De Moor B, Vandewalle J (1999) Least squares support vector machine classifiers: a large scale algorithm. In: Proceedings of European conference of circuit theory design, pp 839–842Google Scholar
  9. 9.
    Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalize deigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74CrossRefGoogle Scholar
  10. 10.
    Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910CrossRefGoogle Scholar
  11. 11.
    Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recognit Lett 29(13):1842–1848CrossRefGoogle Scholar
  12. 12.
    Shao YH, Deng NY (2012) A novel margin based twin support vector machine with unity norm hyperplanes. Neural Comput Appl. doi:10.1007/s00521-012-0894-5
  13. 13.
    Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543CrossRefGoogle Scholar
  14. 14.
    Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89(4):510–522MATHCrossRefGoogle Scholar
  15. 15.
    Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968CrossRefGoogle Scholar
  16. 16.
    Shao YH, Deng NY (2012) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25:114–121MATHCrossRefGoogle Scholar
  17. 17.
    Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10–11):2678–2692MATHCrossRefGoogle Scholar
  18. 18.
    Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300MathSciNetCrossRefGoogle Scholar
  19. 19.
    Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372CrossRefGoogle Scholar
  20. 20.
    Zhong P, Xu Y, Zhao Y (2011) Training twin support vector regression via linear programming. Neural Comput Appl. doi:10.1007/s 00521-011-0526-6
  21. 21.
    Chen X, Yang J, Liang J, Ye Q (2011) Smooth twin support vector regression. Neural Comput Appl. doi:10.1007/s00521-010-0454-9
  22. 22.
    Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73(16–18):2846–2858CrossRefGoogle Scholar
  23. 23.
    Peng X (2012) Efficient twin parametric insensitive support vector regression model. Neurocomputing 79:26–38CrossRefGoogle Scholar
  24. 24.
    Chen X, Yang J, Liang J (2011) A flexible support vector machine for regression. Neural Comput Appl. doi:10.1007/s00521-011-0623-5
  25. 25.
    Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, CambridgeGoogle Scholar
  26. 26.
    Bi J, Bennett KP (2003) A geometric approach to support vector regression. Neurocomputing 55:79–108CrossRefGoogle Scholar
  27. 27.
    Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222MathSciNetCrossRefGoogle Scholar
  28. 28.
    Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The John Hopkins University Press, BaltimoreMATHGoogle Scholar
  29. 29.
    Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of seventh international conference on knowledge and data discovery, San Francisco, pp 77–86Google Scholar
  30. 30.
    Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032–1037CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Pelckmans K, Suykens JAK, Van Gestel T, De Brabanter D, Lukas L, Hamers B, De Moor B, Vandewalle J (2003) LS-SVMlab: a Matlab/C toolbox for least squares support vector machines. Available at http://www.esat.kuleuven.ac.be/sista/lssvmlab
  33. 33.
    Weisberg S (1985) Applied linear regression seconded. Wiley, New YorkGoogle Scholar
  34. 34.
    Staudte RG, Sheather SJ (1990) Robust estimationand testing: Wiley series in probability and mathematical statistics. Wiley, New YorkCrossRefGoogle Scholar
  35. 35.
    Lee CC, Chung PC, Tsai JR, Chang CI (1999) Robust radial basis function neural networks. IEEE Trans Syst Man Cybern B Cybern 29(6):674–685Google Scholar
  36. 36.
    Eubank RL (1999) Nonparametric regression and spline smoothing statistics: textbooks and monographs, vol 157, seconded. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    Blake CL, Merz CJ (1998) UCI repository for machine learning databases. Department of Information and Computer Sciences, University of California, Irvine, http://www.ics.uci.edu/mlearn/MLRepository.html
  38. 38.
    Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18:1–13CrossRefGoogle Scholar
  39. 39.
    Wen W, Hao Z, Yang X (2008) A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression. Neurocomputing 71:3096–3103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Zhijiang College, Zhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.Department of Mathematics, Information School, Renmin University of ChinaBeijingPeople’s Republic of China
  3. 3.College of Science China Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations