Neural Computing and Applications

, Volume 22, Issue 6, pp 1233–1237 | Cite as

On some new operations in soft module theory

  • Ergül TürkmenEmail author
  • Ali Pancar
Original Article


In this paper, we introduce the notions of sum and direct sum of soft submodules, small soft submodules and radical of a soft module. Moreover, we obtain basic properties of such soft submodules.


Soft set Soft module The sum of soft submodules Direct summands The direct sum of soft submodules Small soft submodule The radical of a soft module 



The authors sincerely thank the referees for their valuable suggestions that improved the revision of this paper.


  1. 1.
    Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37:19–31MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aktaş H, Çağman N (2007) Soft sets and soft groups. Inf Sci 177:2726–2735zbMATHCrossRefGoogle Scholar
  3. 3.
    Liu X (2009) Normal soft groups. J. Hubei Inst Natl 27:168–170Google Scholar
  4. 4.
    Acar K, Koyuncu F, Tanay B (2010) Soft sets and soft rings. Comput Math Appl 59:3458–3463MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Feng F, Jun YB, Zhao X (2008) Soft semirings. Comput Math Appl 56:2621–2628MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Sun QM, Zhang ZL, Liu J (2008) Soft sets and soft modules. Lecture Notes in Computer science, 5009/2008:403–409Google Scholar
  7. 7.
    Atagün AO, Sezgin A (2011) Soft substructures of rings, fields and modules. Comput Math Appl 61(3):592–601MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jun YB (2008) Soft BCK/BCI-algebras. Comput Math Appl 56:1408–1413MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jun YB, Park CH (2008) Applications of soft sets in ideal theory of BCK/BCI-algebras. Inf Sci 178:2466–2475MathSciNetzbMATHGoogle Scholar
  10. 10.
    Maji PK, Biswas R, Roy AR (2003) Soft set theory. Comput Math Appl 45:555–562MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ali MI, Feng F, Liu X, Min WK, Shabir M (2009) On some new operations in soft set theory. Comput Math Appl 57:1547–1553MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Clark J, Lomp C, Vanaja N, Wisbauer R (2006) Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics, 406, Birkhäuser, BaselGoogle Scholar
  13. 13.
    Wisbauer R (1991) Foundations of modules and rings. Gordon and Breach, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Arts and ScienceAmasya UniversityAmasyaTurkey
  2. 2.Department of Mathematics, Faculty of Arts and ScienceOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations