Skip to main content

Advertisement

Log in

Exercise and the gut microbiome: implications for supportive care in cancer

  • Review
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

Growing recognition of the gut microbiome as an influential modulator of cancer treatment efficacy and toxicity has led to the emergence of clinical interventions targeting the microbiome to enhance cancer and health outcomes. The highly modifiable nature of microbiota to endogenous, exogenous, and environmental inputs enables interventions to promote resilience of the gut microbiome that have rapid effects on host health, or response to cancer treatment. While diet, probiotics, and faecal microbiota transplant are primary avenues of therapy focused on restoring or protecting gut function in people undergoing cancer treatment, the role of physical activity and exercise has scarcely been examined in this population.

Methods

A narrative review was conducted to explore the nexus between cancer care and the gut microbiome in the context of physical activity and exercise as a widely available and clinically effective supportive care strategy used by cancer survivors.

Results

Exercise can facilitate a more diverse gut microbiome and functional metabolome in humans; however, most physical activity and exercise studies have been conducted in healthy or athletic populations, primarily using aerobic exercise modalities. A scarcity of exercise and microbiome studies in cancer exists.

Conclusions

Exercise remains an attractive avenue to promote microbiome health in cancer survivors. Future research should elucidate the various influences of exercise modalities, intensities, frequencies, durations, and volumes to explore dose-response relationships between exercise and the gut microbiome among cancer survivors, as well as multifaceted approaches (such as diet and probiotics), and examine the influences of exercise on the gut microbiome and associated symptom burden prior to, during, and following cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM et al (2019) Cancer treatment and survivorship statistics. CA Cancer J Clin 69(5):363–385

    PubMed  Google Scholar 

  3. Marzorati C, Riva S, Pravettoni G (2017) Who is a cancer survivor? A systematic review of published definitions. J Cancer Educ 32(2):228–237

    PubMed  Google Scholar 

  4. Lai-Kwon J, Heynemann S, Hart NH, Chan RJ, Smith TJ, Nekhlyudov L et al (2023) Evolving landscape of metastatic cancer survivorship—reconsidering clinical care, policy, and research priorities for the modern era. J Clin Oncol 41(18):3304–3310

  5. Wardill HR, Chan RJ, Chan A, Keefe D, Costello SP, Hart NH (2022) Dual contribution of the gut microbiome to immunotherapy efficacy and toxicity: supportive care implications and recommendations. Support Care Cancer 30(8):6369–6373

    PubMed  PubMed Central  Google Scholar 

  6. Sougiannis AT, VanderVeen BN, Davis JM, Fan D, Murphy EA (2021) Understanding chemotherapy-induced intestinal mucositis and strategies to improve gut resilience. Am J Physiol Gastrointest Liver Physiol 320(5):G712–G7G9

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hart NH, Crawford-Williams F, Crichton M, Yee J, Smith TJ, Koczwara B et al (2022) Unmet supportive care needs of people with advanced cancer and their caregivers: a systematic scoping review. Crit Rev Oncol Hematol 176:103728

    PubMed  Google Scholar 

  8. Hart NH, Iyengar NM (2022) Chapter 8: rehabilitation in cancer — role of exercise and nutrition. In: Bošnjak SMB-SI, Mountzios G, Wood J (eds) European Society of Medical Oncology. ESMO Press, pp 196–206

    Google Scholar 

  9. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R (2021) The microbiome and human cancer. Science 371(6536):eabc4552

    Google Scholar 

  10. Yue B, Gao R, Wang Z, Dou W (2021) Microbiota-host-irinotecan axis: a new insight toward irinotecan chemotherapy. Front Cell Infect Microbiol 11:710945

  11. Yu Z-K, Xie R-L, You R, Liu Y-P, Chen X-Y, Chen M-Y et al (2021) The role of the bacterial microbiome in the treatment of cancer. BMC Cancer 21(1):934

    PubMed  PubMed Central  Google Scholar 

  12. Subramaniam CB, Bowen JM, Gladman MA, Lustberg MB, Mayo SJ, Wardill HR (2020) The microbiota-gut-brain axis: an emerging therapeutic target in chemotherapy-induced cognitive impairment. Neurosci Biobehav Rev 116:470–479

    CAS  PubMed  Google Scholar 

  13. Deleemans JM, Gajtani Z, Baydoun M, Reimer RA, Piedalue KA, Carlson LE (2021) The use of prebiotic and probiotic interventions for treating gastrointestinal and psychosocial health symptoms in cancer patients and survivors: a systematic review. Integr Cancer Ther 20:15347354211061733

  14. Wang Z, Li L, Wang S, Wei J, Qu L, Pan L et al (2022) The role of the gut microbiota and probiotics associated with microbial metabolisms in cancer prevention and therapy. Front Pharmacol 13:1025860

  15. Kennedy MA, Bayes S, Newton RU, Zissiadis Y, Spry NA, Taaffe DR et al (2022) Implementation barriers to integrating exercise as medicine in oncology: an ecological scoping review. J Cancer Surviv 16(4):865–881

    PubMed  Google Scholar 

  16. Kennedy MA, Bayes S, Newton RU, Zissiadis Y, Spry NA, Taaffe DR et al (2020) We have the program, what now? Development of an implementation plan to bridge the research-practice gap prevalent in exercise oncology. Int J Behav Nutr Phys Act 17(1):128

    PubMed  PubMed Central  Google Scholar 

  17. Hart NH, Poprawski DM, Ashbury F, Fitch MI, Chan RJ, Newton RU et al (2022) Exercise for people with bone metastases: MASCC endorsed clinical recommendations developed by the International Bone Metastases Exercise Working Group. Support Care Cancer 30(9):7061–7065

    PubMed  Google Scholar 

  18. Newton RU, Hart NH, Galvão DA, Taaffe DR, Saad F (2022) Prostate cancer treatment with exercise medicine. Trends in Urology & Men’s Health 13(6):14–19

    Google Scholar 

  19. Gustafson MP, Wheatley-Guy CM, Rosenthal AC, Gastineau DA, Katsanis E, Johnson BD et al (2021) Exercise and the immune system: taking steps to improve responses to cancer immunotherapy. J Immunother Cancer 9(7):e001872

    PubMed  PubMed Central  Google Scholar 

  20. Kim J-S, Taaffe DR, Galvão DA, Clay TD, Redfern AD, Hart NH et al (2023) Acute effect of high-intensity interval aerobic exercise on serum myokine levels and resulting tumour-suppressive effect in trained patients with advanced prostate cancer. Prostate Cancer Prostatic Dis 26(4):795–801

  21. Kim J-S, Taaffe DR, Galvão DA, Hart NH, Gray E, Ryan CJ et al (2022) Exercise in advanced prostate cancer elevates myokine levels and suppresses in-vitro cell growth. Prostate Cancer Prostatic Dis 25(1):86–92

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Farley MJ, Bartlett DB, Skinner TL, Schaumberg MA, Jenkins DG (2023) Immunomodulatory function of interleukin-15 and its role in exercise, immunotherapy, and cancer outcomes. Med Sci Sports Exerc 55(3):558–568

    CAS  PubMed  Google Scholar 

  23. Deng R, Wang M, Song Y, Shi Y (2023) A bibliometric analysis on the research trend of exercise and the gut microbiome. Microorganisms. 11(4):903

    PubMed  PubMed Central  Google Scholar 

  24. Khosravi N, Stoner L, Farajivafa V, Hanson ED (2019) Exercise training, circulating cytokine levels and immune function in cancer survivors: a meta-analysis. Brain Behav Immun 81:92–104

    CAS  PubMed  Google Scholar 

  25. Chan RJ, Milch VE, Crawford-Williams F, Agbejule OA, Joseph R, Johal J et al (2023) Patient navigation across the cancer care continuum: an overview of systematic reviews and emerging literature. CA Cancer J Clin 73(6):565–589

  26. Rebersek M (2021) Gut microbiome and its role in colorectal cancer. BMC Cancer 21(1):1325

    PubMed  PubMed Central  Google Scholar 

  27. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359(6371):97–103

    CAS  PubMed  Google Scholar 

  28. Hasan N, Yang H (2019) Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 7:e7502

    PubMed  PubMed Central  Google Scholar 

  29. Scott N, Whittle E, Jeraldo P, Chia N (2022) A systemic review of the role of enterotoxic Bacteroides fragilis in colorectal cancer. Neoplasia. 29:100797

    PubMed  PubMed Central  Google Scholar 

  30. Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT et al (2019) The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med 5(3):178–187

    PubMed  PubMed Central  Google Scholar 

  31. Yu L, Zhao G, Wang L, Zhou X, Sun J, Li X et al (2022) A systematic review of microbial markers for risk prediction of colorectal neoplasia. Br J Cancer 126(9):1318–1328

    PubMed  PubMed Central  Google Scholar 

  32. Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K et al (2021) Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 139:111619

    CAS  PubMed  Google Scholar 

  33. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF (2018) The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 359(6382):1366–1370

    CAS  PubMed  Google Scholar 

  34. Pouncey AL, Scott AJ, Alexander JL, Marchesi J, Kinross J (2018) Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. Ecancermedicalscience. 12:868

    PubMed  PubMed Central  Google Scholar 

  35. Secombe KR, Ball IA, Wignall AD, Bateman E, Keefe DM, Bowen JM (2022) Antibiotic treatment targeting gram negative bacteria prevents neratinib-induced diarrhea in rats. Neoplasia 30:100806

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wardill HR, van der Aa SAR, da Silva Ferreira AR, Havinga R, Tissing WJE, Harmsen HJM (2021) Antibiotic-induced disruption of the microbiome exacerbates chemotherapy-induced diarrhoea and can be mitigated with autologous faecal microbiota transplantation. Eur J Cancer 153:27–39

    PubMed  Google Scholar 

  37. Ramakrishna C, Corleto J, Ruegger PM, Logan GD, Peacock BB, Mendonca S et al (2019) Dominant role of the gut microbiota in chemotherapy induced neuropathic pain. Sci Rep 9(1):20324

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Heshiki Y, Vazquez-Uribe R, Li J, Ni Y, Quainoo S, Imamovic L et al (2020) Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome. 8(1):28

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ervin SM, Ramanan SV, Bhatt AP (2020) Relationship between the gut microbiome and systemic chemotherapy. Dig Dis Sci 65(3):874–884

    PubMed  PubMed Central  Google Scholar 

  40. Al-Qadami GH, Secombe KR, Subramaniam CB, Wardill HR, Bowen JM (2022) Gut microbiota-derived short-chain fatty acids: impact on cancer treatment response and toxicities. Microorganisms. 10(10):2048

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bruno JS, Al-Qadami GH, Laheij A, Bossi P, Fregnani ER, Wardill HR (2023) From pathogenesis to intervention: the importance of the microbiome in oral mucositis. Int J Mol Sci 24(9):8274

  42. Orland C, Emilson EJS, Basiliko N, Mykytczuk NCS, Gunn JM, Tanentzap AJ (2019) Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME J 13(1):1–11

    CAS  PubMed  Google Scholar 

  43. Kers JG, Saccenti E (2021) The power of microbiome studies: some considerations on which alpha and beta metrics to use and how to report results. Front Microbiol 12:796025

    PubMed  Google Scholar 

  44. Su X (2021) Elucidating the beta-diversity of the microbiome: from global alignment to local alignment. mSystems. 6(4):e0036321

    PubMed  Google Scholar 

  45. Bruijning M, Ayroles JF, Henry LP, Koskella B, Meyer KM, Metcalf CJE (2023) Relative abundance data can misrepresent heritability of the microbiome. Microbiome. 11(1):222

    PubMed  PubMed Central  Google Scholar 

  46. Pfau M, Degregori S, Johnson G, Tennenbaum SR, Barber PH, Philson CS et al (2023) The social microbiome: gut microbiome diversity and abundance are negatively associated with sociality in a wild mammal. R Soc Open Sci 10(10):231305

    PubMed  PubMed Central  Google Scholar 

  47. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bokulich NA, Ziemski M, Robeson MS, Kaehler BD (2020) Measuring the microbiome: best practices for developing and benchmarking microbiomics methods. Comput Struct Biotechnol J 18:4048–4062

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Montassier E, Gastinne T, Vangay P, Al-Ghalith GA, Bruley des Varannes S, Massart S et al (2015) Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther 42(5):515–528

    CAS  PubMed  Google Scholar 

  50. Secombe KR, Coller JK, Gibson RJ, Wardill HR, Bowen JM (2019) The bidirectional interaction of the gut microbiome and the innate immune system: implications for chemotherapy-induced gastrointestinal toxicity. Int J Cancer 144(10):2365–2376

    CAS  PubMed  Google Scholar 

  51. Kok DE, Winkels RM, van Herpen CML, Kampman E (2018) Toxicity-induced modification of treatment: what is in a name? Eur J Cancer 104:145–150

    PubMed  Google Scholar 

  52. Lyman GH (2009) Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Cancer Netw 7(1):99–108

    Google Scholar 

  53. Nielson CM, Bylsma LC, Fryzek JP, Saad HA, Crawford J (2021) Relative dose intensity of chemotherapy and survival in patients with advanced stage solid tumor cancer: a systematic review and meta-analysis. Oncologist. 26(9):e1609–e1e18

    PubMed  PubMed Central  Google Scholar 

  54. Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H (2023) Manipulating the gut microbiome as a therapeutic strategy to mitigate late effects in childhood cancer survivors. Technol Cancer Res Treat 22:15330338221149799

  55. Lu K, Dong S, Wu X, Jin R, Chen H (2021) Probiotics in cancer. Front. Oncol. 11:638148

    CAS  Google Scholar 

  56. Wardill HR, Van Sebille YZA, Ciorba MA, Bowen JM (2018) Prophylactic probiotics for cancer therapy-induced diarrhoea: a meta-analysis. Curr Opin Support Palliat Care 12(2):187–197

    PubMed  Google Scholar 

  57. Wardill HR, Secombe KR, Bryant RV, Hazenberg MD, Costello SP (2019) Adjunctive fecal microbiota transplantation in supportive oncology: emerging indications and considerations in immunocompromised patients. EBioMedicine. 44:730–740

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L et al (2021) Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371(6529):602–609

    CAS  PubMed  Google Scholar 

  59. van Lier YF, Davids M, Haverkate NJE, de Groot PF, Donker ML, Meijer E et al (2020) Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci Transl Med 12(556):eaaz8926

  60. Song W, Anselmo AC, Huang L (2019) Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol 14(12):1093–1103

    CAS  PubMed  Google Scholar 

  61. Song M, Chan AT (2019) Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol 17(2):275–289

    CAS  PubMed  Google Scholar 

  62. Song M, Chan AT, Sun J (2020) Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 158(2):322–340

    CAS  PubMed  Google Scholar 

  63. Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP (2022) Fermented foods, health and the gut microbiome. Nutrients 14(7):1527

  64. Fu J, Zheng Y, Gao Y, Xu W (2022) Dietary fiber intake and gut microbiota in human health. Microorganisms 10(12):2507

  65. Cronin P, Joyce SA, O’Toole PW, O’Connor EM (2021) Dietary fibre modulates the gut microbiota. Nutrients 13(5):1655

  66. Lin D, Peters BA, Friedlander C, Freiman HJ, Goedert JJ, Sinha R et al (2018) Association of dietary fibre intake and gut microbiota in adults. Br J Nutr 120(9):1014–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee KA, Shaw HM, Bataille V, Nathan P, Spector TD (2020) Role of the gut microbiome for cancer patients receiving immunotherapy: dietary and treatment implications. Eur J Cancer 138:149–155

    CAS  PubMed  Google Scholar 

  68. Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB et al (2021) Gut-microbiota-targeted diets modulate human immune status. Cell. 184(16):4137–53.e14

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Withrow D, Bowers SJ, Depner CM, González A, Reynolds AC, Wright KP Jr (2021) Sleep and circadian disruption and the gut microbiome-possible links to dysregulated metabolism. Curr Opin Endocr Metab Res 17:26–37

    CAS  PubMed  Google Scholar 

  70. Matenchuk BA, Mandhane PJ, Kozyrskyj AL (2020) Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev 53:101340

    PubMed  Google Scholar 

  71. Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA (2019) Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev 47(2):75–85

    PubMed  Google Scholar 

  72. Clauss M, Gérard P, Mosca A, Leclerc M (2021) Interplay between exercise and gut microbiome in the context of human health and performance. Front Nutr 8:637010

  73. Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M, Santacroce L (2022) The connection between physical exercise and gut microbiota: implications for competitive sports athletes. Sports Med 52(10):2355–2369

    PubMed  PubMed Central  Google Scholar 

  74. Cronin O, O’Sullivan O, Barton W, Cotter PD, Molloy MG, Shanahan F (2017) Gut microbiota: implications for sports and exercise medicine. Br J Sports Med 51(9):700–701

    PubMed  Google Scholar 

  75. Cronin O, Molloy MG, Shanahan F (2016) Exercise, fitness, and the gut. Curr Opin Gastroenterol 32(2):67–73

    PubMed  Google Scholar 

  76. Jollet M, Nay K, Chopard A, Bareille MP, Beck A, Ollendorff V et al (2021) Does physical inactivity induce significant changes in human gut microbiota? New answers using the dry immersion hypoactivity model. Nutrients 13(11):3865

  77. Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk–Karolczuk J, Domagalska M, Cichoń J et al (2022) Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Sci Med Rehabil 14(1):122

    PubMed  PubMed Central  Google Scholar 

  78. World Health Organization (2022) Physical activity. Geneva: World Health Organization. https://www.who.int/news-room/fact-sheets/detail/physical-activity. Accessed 18 Nov 2023

  79. Hart NH, Galvão DA, Newton RU (2017) Exercise medicine for advanced prostate cancer. Curr Opin Support Palliat Care 11(3):247–257

    PubMed  Google Scholar 

  80. Nilsen TS, Scott JM, Michalski M, Capaci C, Thomas S, Herndon JE 2nd et al (2018) Novel methods for reporting of exercise dose and adherence: an exploratory analysis. Med Sci Sports Exerc 50(6):1134–1141

    PubMed  PubMed Central  Google Scholar 

  81. Fairman CM, Nilsen TS, Newton RU, Taaffe DR, Spry N, Joseph D et al (2020) Reporting of resistance training dose, adherence, and tolerance in exercise oncology. Med Sci Sports Exerc 52(2):315–322

  82. Ramsey I, Chan A, Charalambous A, Cheung YT, Darling HS, Eng L et al (2022) Exercise counselling and referral in cancer care: an international scoping survey of health care practitioners’ knowledge, practices, barriers, and facilitators. Support Care Cancer 30(11):9379–9391

    PubMed  PubMed Central  Google Scholar 

  83. Hayes SC, Newton RU, Spence RR, Galvão DA (2019) The Exercise and Sports Science Australia position statement: exercise medicine in cancer management. J Sci Med Sport 22(11):1175–1199

    PubMed  Google Scholar 

  84. Newton RU, Kenfield SA, Hart NH, Chan JM, Courneya KS, Catto J et al (2018) Intense exercise for survival among men with metastatic castrate-resistant prostate cancer (INTERVAL-GAP4): a multicentre, randomised, controlled phase III study protocol. BMJ Open 8(5):e022899

    PubMed  PubMed Central  Google Scholar 

  85. Campbell KL, Neil SE, Winters-Stone KM (2012) Review of exercise studies in breast cancer survivors: attention to principles of exercise training. Br J Sports Med 46(13):909–916

    PubMed  Google Scholar 

  86. Bland KA, Neil-Sztramko SE, Zadravec K, Medysky ME, Kong J, Winters-Stone KM et al (2021) Attention to principles of exercise training: an updated systematic review of randomized controlled trials in cancers other than breast and prostate. BMC Cancer 21(1):1179

    PubMed  PubMed Central  Google Scholar 

  87. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A et al (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 63(12):1913–1920

    CAS  PubMed  Google Scholar 

  88. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH et al (2017) Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 5(1):98

    PubMed  PubMed Central  Google Scholar 

  89. O’Donovan CM, Madigan SM, Garcia-Perez I, Rankin A, O’Sullivan O, Cotter PD (2020) Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport 23(1):63–68

    PubMed  Google Scholar 

  90. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S et al (2016) Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 4(1):42

    PubMed  PubMed Central  Google Scholar 

  91. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E et al (2018) The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 67(4):625–633

    CAS  PubMed  Google Scholar 

  92. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA et al (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50(4):747–757

  93. O’Sullivan O, Cronin O, Clarke SF, Murphy EF, Molloy MG, Shanahan F et al (2015) Exercise and the microbiota. Gut Microbes 6(2):131–136

    PubMed  PubMed Central  Google Scholar 

  94. Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H (2019) The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr 16(1):21

    PubMed  PubMed Central  Google Scholar 

  95. Barton W, Cronin O, Garcia-Perez I, Whiston R, Holmes E, Woods T et al (2021) The effects of sustained fitness improvement on the gut microbiome: a longitudinal, repeated measures case-study approach. Transl Sports Med 4(2):174–192

    PubMed  Google Scholar 

  96. Kern T, Blond MB, Hansen TH, Rosenkilde M, Quist JS, Gram AS et al (2020) Structured exercise alters the gut microbiota in humans with overweight and obesity—a randomized controlled trial. Int J Obes 44(1):125–135

    Google Scholar 

  97. Motiani KK, Collado MC, Eskelinen J-J, Virtanen KA, Löyttyniemi E, Salminen S et al (2020) Exercise training modulates gut microbiota profile and improves endotoxemia. Med Sci Sports Exerc 52(1):94–104

    PubMed  Google Scholar 

  98. Cronin O, Barton W, Moran C, Sheehan D, Whiston R, Nugent H et al (2019) Moderate-intensity aerobic and resistance exercise is safe and favorably influences body composition in patients with quiescent inflammatory bowel disease: a randomized controlled cross-over trial. BMC Gastroenterol 19(1):29

    PubMed  PubMed Central  Google Scholar 

  99. Huber Y, Pfirrmann D, Gebhardt I, Labenz C, Gehrke N, Straub BK et al (2019) Improvement of non-invasive markers of NAFLD from an individualised, web-based exercise program. Aliment Pharmacol Ther 50(8):930–939

    CAS  PubMed  Google Scholar 

  100. Bycura D, Santos AC, Shiffer A, Kyman S, Winfree K, Sutliffe J et al (2021) Impact of different exercise modalities on the human gut microbiome. Sports (Basel) 9(2):14

    PubMed  Google Scholar 

  101. Warbeck C, Dowd AJ, Kronlund L, Parmar C, Daun JT, Wytsma-Fisher K et al (2021) Feasibility and effects on the gut microbiota of a 12-week high-intensity interval training plus lifestyle education intervention on inactive adults with celiac disease. Appl Physiol Nutr Metab 46(4):325–336

    PubMed  Google Scholar 

  102. Keohane DM, Woods T, O’Connor P, Underwood S, Cronin O, Whiston R et al (2019) Four men in a boat: ultra-endurance exercise alters the gut microbiome. J Sci Med Sport 22(9):1059–1064

    PubMed  Google Scholar 

  103. Craven J, Cox AJ, Bellinger P, Desbrow B, Irwin C, Buchan J et al (2022) The influence of exercise training volume alterations on the gut microbiome in highly-trained middle-distance runners. Eur J Sport Sci 22(8):1222–1230

    PubMed  Google Scholar 

  104. Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill CA, Poretsky R (2020) Comparative analysis of gut microbiota following changes in training volume among swimmers. Int J Sports Med 41(5):292–299

    PubMed  Google Scholar 

  105. Grosicki GJ, Fielding RA, Lustgarten MS (2018) Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif Tissue Int 102(4):433–442

    CAS  PubMed  Google Scholar 

  106. Suryani D, Subhan Alfaqih M, Gunadi JW, Sylviana N, Goenawan H, Megantara I et al (2022) Type, intensity, and duration of exercise as regulator of gut microbiome profile. Curr Sports Med Rep 21(3):84–91

  107. Boytar AN, Nitert MD, Morrision M, Skinner TL, Jenkins DG (2022) Exercise-induced changes to the human gut microbiota and implications for colorectal cancer: a narrative review. J Physiol 600(24):5189–5201

    CAS  PubMed  Google Scholar 

  108. Cormie P, Zopf EM, Zhang X, Schmitz KH (2017) The impact of exercise on cancer mortality, recurrence, and treatment-related adverse effects. Epidemiol Rev 39(1):71–92

    PubMed  Google Scholar 

  109. Newton RU, Christophersen CT, Fairman CM, Hart NH, Taaffe DR, Broadhurst D et al (2019) Does exercise impact gut microbiota composition in men receiving androgen deprivation therapy for prostate cancer? A single-blinded, two-armed, randomised controlled trial. BMJ Open 9(4):e024872

    PubMed  PubMed Central  Google Scholar 

  110. Paulsen JA, Ptacek TS, Carter SJ, Liu N, Kumar R, Hyndman L et al (2017) Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors. Support Care Cancer 25(5):1563–1570

    PubMed  PubMed Central  Google Scholar 

  111. Wang B, Jin Y-x, Dong J-l, Xiao H-w, Zhang S-q, Li Y et al (2021) Low-intensity exercise modulates gut microbiota to fight against radiation-induced gut toxicity in mouse models. Front Cell Dev Biol 9:706755

  112. Allen JM, Mailing LJ, Cohrs J, Salmonson C, Fryer JD, Nehra V et al (2018) Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9(2):115–130

    CAS  PubMed  Google Scholar 

  113. Lucia A. (2022). Exercise and Lifestyle Intervention for Patients With Adolescent Cancer: a Randomised Controlled Trial (HEALTHY ADOL). ClinicalTrials.gov ID: NCT05539794. Bethesda (MD): National Library of Medicine (US). https://www.clinicaltrials.gov/study/NCT05539794?term=NCT05539794. Accessed 18 Nov 2023

  114. Marfil-Sánchez A, Seelbinder B, Ni Y, Varga J, Berta J, Hollosi V et al (2021) Gut microbiome functionality might be associated with exercise tolerance and recurrence of resected early-stage lung cancer patients. PLoS One 16(11):e0259898

    PubMed  PubMed Central  Google Scholar 

  115. Carter SJ, Hunter GR, Blackston JW, Liu N, Lefkowitz EJ, Van Der Pol WJ et al (2019) Gut microbiota diversity is associated with cardiorespiratory fitness in post-primary treatment breast cancer survivors. Exp Physiol 104(4):529–539

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 63(8):1275–1283

    CAS  PubMed  Google Scholar 

  117. Himbert C, Stephens WZ, Gigic B, Hardikar S, Holowatyj AN, Lin T et al (2022) Differences in the gut microbiome by physical activity and BMI among colorectal cancer patients. Am J Cancer Res 12(10):4789–4801

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun L, Yan Y, Yan S, Yang Y (2022) Does physical activity associate with gut microbiome and survival outcomes of Chinese metastatic colorectal cancer patients? A secondary analysis of a randomized controlled trial. Heliyon. 8(11):e11615

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bielik V, Hric I, Šmahová S, Tkačiková M, Hlaváčová V, Nechalová L et al (2023) The effect of physical exercise and dairy probiotics (Lactobacillus casei) on gut microbiome in childhood cancer survivors. Neoplasma. 70(4):588–596

    PubMed  Google Scholar 

  120. Donati Zeppa S, Natalucci V, Agostini D, Vallorani L, Amatori S, Sisti D et al (2023) Changes in gut microbiota composition after 12 weeks of a home-based lifestyle intervention in breast cancer survivors during the COVID-19 lockdown. Front Oncol 13:1225645

    PubMed  PubMed Central  Google Scholar 

  121. Gnagnarella P, Marvaso G, Jereczek-Fossa BA, de Cobelli O, Simoncini MC, Nevola Teixeira LF et al (2022) Life style and interaction with microbiota in prostate cancer patients undergoing radiotherapy: study protocol for a randomized controlled trial. BMC Cancer 22(1):794

    PubMed  PubMed Central  Google Scholar 

  122. Ryu J, Lee E-Y, Min J, Yeon S, Lee J-W, Chu SH et al (2023) Effect of a 1-year tailored exercise program according to cancer trajectories in patients with breast cancer: study protocol for a randomized controlled trial. BMC Cancer 23(1):200

    PubMed  PubMed Central  Google Scholar 

  123. Demark-Wahnefried W, Nix JW, Hunter GR, Rais-Bahrami S, Desmond RA, Chacko B et al (2016) Feasibility outcomes of a presurgical randomized controlled trial exploring the impact of caloric restriction and increased physical activity versus a wait-list control on tumor characteristics and circulating biomarkers in men electing prostatectomy for prostate cancer. BMC Cancer 16(1):61

    PubMed  PubMed Central  Google Scholar 

  124. Ueland K, Sanchez SC, Rillamas-Sun E, Shen H, Schattenkerk L, Garcia G et al (2022) A digital health intervention to improve nutrition and physical activity in breast cancer survivors: rationale and design of the Cook and Move for Your Life pilot and feasibility randomized controlled trial. Contemp Clin Trials 123:106993

    PubMed  Google Scholar 

  125. Kenfield SA, Philip EJ, Phillips SM, Meyerhardt JA, Chan JM, Atreya CE et al (2022) Optimizing intervention tools to improve nutrition and physical activity for colorectal cancer survivors (tools to be fit): study protocol of a randomized factorial experiment. Contemp Clin Trials 123:107009

    PubMed  PubMed Central  Google Scholar 

  126. Boytar AN, Skinner TL, Wallen RE, Jenkins DG, Dekker NM (2023) The effect of exercise prescription on the human gut microbiota and comparison between clinical and apparently healthy populations: a systematic review. Nutrients 15(6):1534

  127. Simpson CA, Schwartz OS, Eliby D, Butler CA, Huang K, Brien-Simpson N et al (2021) Bugs and brains, the gut and mental health study: a mixed-methods study investigating microbiota composition and function in anxiety, depression and irritable bowel syndrome. BMJ Open 11(3):e043221

    PubMed  PubMed Central  Google Scholar 

  128. Watson MD, Cross BL, Grosicki GJ (2021) Evidence for the contribution of gut microbiota to age-related anabolic resistance. Nutrients. 13(2):706

    PubMed  PubMed Central  Google Scholar 

  129. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D et al (2017) Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients 9(12):1303

  130. Shanahan F, Ghosh TS, O’Toole PW (2021) The healthy microbiome—what is the definition of a healthy gut microbiome? Gastroenterology. 160(2):483–494

    PubMed  Google Scholar 

  131. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51

    PubMed  PubMed Central  Google Scholar 

  132. Aya V, Flórez A, Perez L, Ramírez JD (2021) Association between physical activity and changes in intestinal microbiota composition: a systematic review. PLoS One 16(2):e0247039

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Marchbank T, Davison G, Oakes JR, Ghatei MA, Patterson M, Moyer MP et al (2011) The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes. Am J Physiol Gastrointest Liver Physiol 300(3):G477–G484

    CAS  PubMed  Google Scholar 

  134. Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K et al (1985) Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol 116(2):183–191

    Google Scholar 

  135. Keirns BH, Koemel NA, Sciarrillo CM, Anderson KL, Emerson SR (2020) Exercise and intestinal permeability: another form of exercise-induced hormesis? Am J Physiol Gastrointest Liver Physiol 319(4):G512–G518

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NHH is MASCC Founding Chair of Exercise Oncology and MASCC Chair of Fatigue, HRW is MASCC Vice-Chair of Mucositis, and RJC is MASCC Chair of Survivorship for the Multinational Association of Supportive Care in Cancer. NHH is a MASCC Terry Langbaum Survivorship Fellow. DH is a MASCC Cognition Fellow.

Funding

NHH and RJC receive salary support from the National Health and Medical Research Council as investigator fellows (APP2018070 and APP1194051). HRW receives salary support from the Hospital Research Foundation Group as a research fellow.

Author information

Authors and Affiliations

Authors

Contributions

NHH, MPW, RJC, and HRW conceptualised the review topic, scope, and content. All authors contributed significantly to the preparation, drafting, revision, and completion of the manuscript at multiple stages throughout the process. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Nicolas H. Hart.

Ethics declarations

Competing interests

NHH is an associate editor for the Supportive Care in Cancer journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nicolas H. Hart and Matthew P. Wallen are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, N.H., Wallen, M.P., Farley, M.J. et al. Exercise and the gut microbiome: implications for supportive care in cancer. Support Care Cancer 31, 724 (2023). https://doi.org/10.1007/s00520-023-08183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00520-023-08183-7

Keywords

Navigation