Skip to main content

Advertisement

Log in

Cancer immunotherapy–related adverse events: causes and challenges

  • Special Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Despite the success and ongoing promise of monoclonal antibody–targeted immune checkpoint inhibitor immunotherapy of advanced malignancies, in particular, antibodies directed against CTLA-4 and PD-1/PD-L1, the development of immune-related adverse events (irAEs) remains a constraint of this type of therapy. Although rarely fatal, the occurrence of irAEs may necessitate discontinuation of immunotherapy, as well as administration of corticosteroids or other immunosuppressive therapies that may not only compromise efficacy but also predispose for development of opportunistic infection. Clearly, retention of efficacy of immune checkpoint–targeted therapies with concurrent attenuation of immune-mediated toxicity represents a formidable challenge. In this context, the current brief review examines mechanistic relationships between these events, as well as recent insights into immunopathogenesis, and strategies which may contribute to resolving this issue. These sections are preceded by brief overviews of the discovery and functions of CTLA-4 and PD-1, as well as the chronology of the development of immunotherapeutic monoclonal antibodies which target these immune checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736. https://doi.org/10.1126/science.271.5256.1734

    Article  CAS  PubMed  Google Scholar 

  2. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gross JA, St John T, Allison JP (1990) The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J Immunol 144(8):3201–3210

    CAS  PubMed  Google Scholar 

  4. Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182. https://doi.org/10.1111/j.1600-065X.2008.00662.x

    Article  CAS  PubMed  Google Scholar 

  5. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, Sharpe AH, Freeman GJ, Germain RN, Nakaya HI, Xue HH, Ahmed R (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537(7620):417–421. https://doi.org/10.1038/nature19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khattri R, Auger JA, Griffin MD, Sharpe AH, Bluestone JA (1999) Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J Immunol 162(10):5784–5791

    CAS  PubMed  Google Scholar 

  7. Crawford A, Wherry EJ (2007) Inhibitory receptors: whose side are they on? Nat Immunol 8(11):1201–1203. https://doi.org/10.1038/ni1107-1201

    Article  CAS  PubMed  Google Scholar 

  8. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, Korman AJ (2013) Anti CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1(1):32–42. https://doi.org/10.1158/2326-6066.CIR-13-0013

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151. https://doi.org/10.1016/s1074-7613(00)80089-8

    Article  CAS  PubMed  Google Scholar 

  10. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268. https://doi.org/10.1038/85330

    Article  CAS  PubMed  Google Scholar 

  11. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687. https://doi.org/10.1038/nature04444

    Article  CAS  PubMed  Google Scholar 

  12. Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375(18):1767–1778. https://doi.org/10.1056/NEJMra1514296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553. https://doi.org/10.1128/MCB.25.21.9543-9553.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. U.S. Food & Drug Administration website. https://www.fda.gov/. Accessed 1 May 2019

  15. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86. https://doi.org/10.3389/fonc.2018.00086

    Article  PubMed  PubMed Central  Google Scholar 

  16. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378(2):158–168. https://doi.org/10.1056/NEJMra1703481

    Article  CAS  PubMed  Google Scholar 

  17. Trinh S, Le A, Gowani S, La-Beck NM (2019) Management of immune-related adverse events associated with immune checkpoint inhibitor therapy: a minireview of current clinical guidelines. Asia Pac J Oncol Nurs 6(2):154–160. https://doi.org/10.4103/apjon.apjon_3_19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anderson R, Theron AJ, Rapoport BL (2019) Immunopathogenesis of immune checkpoint inhibitor-related adverse events: roles of the intestinal microbiome and Th17 cells. Front Immunol 10:2254. https://doi.org/10.3389/fimmu.2019.02254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luu M, Steinhoff U, Visekruna A (2017) Functional heterogeneity of gut-resident regulatory T cells. Clin Transl Immunol 6(9):e156. https://doi.org/10.1038/cti.2017.39

    Article  CAS  Google Scholar 

  20. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39(1):98–106. https://doi.org/10.1097/COC.0000000000000239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, Paulos CM (2018) When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 15(5):458–469. https://doi.org/10.1038/s41423-018-0004-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elkrief A, Derosa L, Zitvogel L, Kroemer G, Routy B (2019) The intimate relationship between gut microbiota and cancer immunotherapy. Gut Microbes 10(3):424–428. https://doi.org/10.1080/19490976.2018.1527167

    Article  CAS  PubMed  Google Scholar 

  23. Fessler J, Matson V, Gajewski TF (2019) Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer 7(1):108. https://doi.org/10.1186/s40425-019-0574-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA (2019) The microbiome, cancer, and cancer therapy. Nat Med 25(3):377–388. https://doi.org/10.1038/s41591-019-0377-7

    Article  CAS  PubMed  Google Scholar 

  25. Zitvogel L, Ayyoub M, Routy B, Kroemer G (2016) Microbiome and anticancer immunosurveillance. Cell 165(2):276–287. https://doi.org/10.1016/j.cell.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  26. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, Shiota A, Takeshita K, Yasuma-Mitobe K, Riethmacher D, Kaisho T, Norman JM, Mucida D, Suematsu M, Yaguchi T, Bucci V, Inoue T, Kawakami Y, Olle B, Roberts B, Hattori M, Xavier RJ, Atarashi K, Honda K (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565(7741):600–605. https://doi.org/10.1038/s41586-019-0878-z

    Article  CAS  PubMed  Google Scholar 

  27. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084. https://doi.org/10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97. https://doi.org/10.1126/science.aan3706

    Article  CAS  PubMed  Google Scholar 

  29. Chabner BA, Nabel CS (2018) Canakinumab and lung cancer: intriguing, but is it real? Oncologist 23(6):637–638. https://doi.org/10.1634/theoncologist.2018-0116

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton G, Miller V, Stephens PJ, Daniels GA, Kurzrock R (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608. https://doi.org/10.1158/1535-7163.MCT-17-0386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, Sasson A, Golhar R, Vitazka P, Chang H, Geese WJ, Antonia SJ (2018) Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 33(5):853–861.e4. https://doi.org/10.1016/j.ccell.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N, Hiltermann TJN, Nair S, Juergens R, Peters S, Minenza E, Wrangle JM, Rodriguez-Abreu D, Borghaei H, Blumenschein GR Jr, Villaruz LC, Havel L, Krejci J, Corral Jaime J, Chang H, Geese WJ, Bhagavatheeswaran P, Chen AC, Socinski MA, CheckMate 026 Investigators (2017) First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 376(25):2415–2426. https://doi.org/10.1056/NEJMoa1613493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CE, Network CGAR, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich L (2018) The immune landscape of cancer. Immunity 48(4):812–830.e14. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469. https://doi.org/10.1126/science.aaf1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matusiak M, Dzierżawski J, Jóźwicki J, Starzyński J, Misiak J, Brożyna AA, Jóźwicki W (2019) Expression of PD-L1 in tumor and immune system cells affects the survival of patients with urinary bladder cancer. Med Res J 4(3):142–147. https://doi.org/10.5603/MRJ.a2019.0026

    Article  Google Scholar 

  36. Zhao T, Li C, Wu Y, Li B, Zhang B (2017) Prognostic value of PD-L1 expression in tumor infiltrating immune cells in cancers: a meta-analysis. PLoS One 12(4):e0176822. https://doi.org/10.1371/journal.pone.0176822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA, IMpassion130 Trial Investigators (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  38. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296. https://doi.org/10.1146/annurev.immunol.25.022106.141609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  40. Rapoport BL, Anderson R (2019) Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci 20(4):E959. https://doi.org/10.3390/ijms20040959

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Professor BL Rapoport is supported by the Cancer Association of South Africa (CANSA) and the National Research Foundation (NRF) of South Africa.

Dr. I. Glezerman is supported by the NIH/NCI (Cancer Center Support Grant P30 CA008748)

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed equally to the conceptualization of the manuscript; sections on immunological mechanisms were shared equally by AGB and RA, while BLR and DBJ provided clinical input and oversight. All of the authors provided critical appraisal of the manuscript and approve of its submission.

Corresponding author

Correspondence to Bernardo L. Rapoport.

Ethics declarations

Conflict of interest

AB, RA, JC, TC, PG, DG, and VRS have no conflict of interest to declare. MC reports grants from Novartis, other from Neoleukin Therapeutics, personal fees from Partner Therapeutics, personal fees from Tillotts Pharma, and grants from Genentech, outside the submitted work. MG reports other from Bristol Myers Squibb (BMS) and other from AstraZeneca, outside the submitted work. IG reports other from Pfizer Inc and personal fees from CytomX Inc, outside the submitted work. DBJ reports other from Array Biopharma, grants and other from BMS, grants from Incyte, other from Jansen, other from Merck, and other from Novartis, outside the submitted work. In addition, DBJ has a patent co-inventor on use of CTLA-4 agonist for IAEs pending. BLR reports personal fees and other from Merck and Co, grants, personal fees, and other from BMS; grants, personal fee,s and other from Roche South Africa; and personal fees and other from AstraZeneca, during the conduct of the study. MSA reports personal fees from Gilead, grants from Pfizer, and personal fees from Abbvie, outside the submitted work. All work with these entities has ended.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blidner, A.G., Choi, J., Cooksley, T. et al. Cancer immunotherapy–related adverse events: causes and challenges. Support Care Cancer 28, 6111–6117 (2020). https://doi.org/10.1007/s00520-020-05705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-020-05705-5

Keywords

Navigation