Abstract
Introduction
Fever of unknown origin is by far the most common diagnosis in low-risk febrile neutropenic patients undergoing chemotherapy. The current empirical regimen combines amoxicillin-clavulanic acid and fluoroquinolones in low-risk neutropenic patients. The aim of this study was to assess the appropriateness of antibiotherapy and the outcome of bloodstream infections (BSI) in patients with expected neutropenia of short duration.
Methods
This 2-year monocentric retrospective study included all consecutive neutropenic febrile adult patients with expected duration of neutropenia ≤ 7 days. They were classified into low- and high-risk groups for complications using the MASCC index. Appropriateness of initial empirical antibiotic regimen was assessed for each BSI. Multivariate analysis was performed to identify factors associated with mortality.
Results
Over the study period, 189 febrile episodes with positive blood cultures in neutropenic patients were reported, of which 44 occurred during expected duration of neutropenia ≤ 7 days. Patients were classified as high-risk (n = 27) and low-risk (n = 17). Gram-negative bacteria BSI represented 57% of cases, including only two multidrug-resistant bacteria in high-risk patients. Initial empirical antibiotherapy was appropriate in 86% of cases, and inappropriate in the event of coagulase-negative Staphylococcus BSI (14%), although the outcome was always favorable. In low-risk patients, no deaths and only 12% of severe complications were reported, contrasting with mortality and complication rates of 48% (p < 0.001) and 63% in high-risk patients (p < 0.001), respectively.
Conclusions
Outcome of BSI is favorable in low-risk febrile neutropenic patients, even with inappropriate empirical initial antibiotic regimen for coagulase-negative Staphylococcus BSI. Initial in-hospital assessment and close monitoring of these patients are however mandatory.
This is a preview of subscription content, access via your institution.

Data availability
The authors declared having full control of primary data and allow the journal to review the data if requested.
References
de Naurois J, Novitzky-Basso I, Gill MJ et al (2010) Management of febrile neutropenia: ESMO Clinical Practice Guidelines. Ann Oncol Off J Eur Soc Med Oncol 21(Suppl 5):v252–v256
Freifeld AG, Bow EJ, Sepkowitz KA et al (2011) Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis Off Publ Infect Dis Soc Am 52:e56–e93
Talcott JA, Finberg R, Mayer RJ, Goldman L (1988) The medical course of cancer patients with fever and neutropenia. Clinical identification of a low-risk subgroup at presentation. Arch Intern Med 148:2561–2568
Klastersky J, Paesmans M, Rubenstein EB, Boyer M, Elting L, Feld R, Gallagher J, Herrstedt J, Rapoport B, Rolston K, Talcott J (2000) The Multinational Association for Supportive Care in Cancer Risk Index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol 18:3038–3051
Flowers CR, Seidenfeld J, Bow EJ, Karten C, Gleason C, Hawley DK, Kuderer NM, Langston AA, Marr KA, Rolston KV, Ramsey SD (2013) Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol Off J Am Soc Clin Oncol 31:794–810
Baden LR, Swaminathan S, Angarone M et al (2016) Prevention and treatment of cancer-related infections, version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw JNCCN 14:882–913
Kamana M, Escalante C, Mullen CA, Frisbee-Hume S, Rolston KVI (2005) Bacterial infections in low-risk, febrile neutropenic patients. Cancer 104:422–426
Cullen M, Steven N, Billingham L, Gaunt C, Hastings M, Simmonds P, Stuart N, Rea D, Bower M, Fernando I, Huddart R, Gollins S, Stanley A, Simple Investigation in Neutropenic Individuals of the Frequency of Infection after Chemotherapy +/- Antibiotic in a Number of Tumours (SIGNIFICANT) Trial Group (2005) Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N Engl J Med 353:988–998
Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G, Allione B, D'Antonio D, Buelli M, Nosari AM, Cilloni D, Zuffa E, Cantaffa R, Specchia G, Amadori S, Fabbiano F, Deliliers GL, Lauria F, Foà R, del Favero A, Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) Infection Program (2005) Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med 353:977–987
Kern WV, Cometta A, De Bock R, Langenaeken J, Paesmans M, Gaya H (1999) Oral versus intravenous empirical antimicrobial therapy for fever in patients with granulocytopenia who are receiving cancer chemotherapy. International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. N Engl J Med 341:312–318
Innes HE, Smith DB, O’Reilly SM, Clark PI, Kelly V, Marshall E (2003) Oral antibiotics with early hospital discharge compared with in-patient intravenous antibiotics for low-risk febrile neutropenia in patients with cancer: a prospective randomised controlled single centre study. Br J Cancer 89:43–49
Viscoli C, Cometta A, Kern WV et al (2006) Piperacillin-tazobactam monotherapy in high-risk febrile and neutropenic cancer patients. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 12:212–216
Garnica M, Nouér SA, Pellegrino FLPC, Moreira BM, Maiolino A, Nucci M (2013) Ciprofloxacin prophylaxis in high risk neutropenic patients: effects on outcomes, antimicrobial therapy and resistance. BMC Infect Dis 13:356
Klastersky J, Ameye L, Maertens J et al (2007) Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents 30(Suppl 1):S51–S59
National Healthcare Safety Network bacteremia definiton. Available at: https://www.google.fr/search?ei=FfDeW6XKKoKXlwS9_IfQCw&q=national+healthcare+safety+network+bacteremia+definiton&oq=national+healthcare+safety+network+bacteremia+definiton. Accessed 17 Mar 2018
Stuck AE, Minder CE, Frey FJ (1989) Risk of infectious complications in patients taking glucocorticosteroids. Rev Infect Dis 11:954–963
Finkelsztein EJ, Jones DS, Ma KC et al (2017) Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit. Crit Care Lond Engl 21:73
Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 18:268–281
EUCAST: Breakpoints tables for interpretation of MICs and zone diameters Version 4.0, valid from 2014-31-12. Available at: http://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/. Accessed 26 Dec 2018
Société Française de Microbiologie. Comité de l’antibiogramme de la Société Française de Microbiologie, Recommandations 2017. 2017; Available at: http://www.sfm-microbiologie.org/UserFiles/files/casfm/CASFMV1_0_MARS_2017.pdf. Accessed 27 Mar 2018
Roth A, Wiklund AE, Pålsson AS, Melander EZ, Wullt M, Cronqvist J, Walder M, Sturegård E (2010) Reducing blood culture contamination by a simple informational intervention. J Clin Microbiol 48:4552–4558
Kern WV, Marchetti O, Drgona L, Akan H, Aoun M, Akova M, de Bock R, Paesmans M, Viscoli C, Calandra T (2013) Oral antibiotics for fever in low-risk neutropenic patients with cancer: a double-blind, randomized, multicenter trial comparing single daily moxifloxacin with twice daily ciprofloxacin plus amoxicillin/clavulanic acid combination therapy--EORTC infectious diseases group trial XV. J Clin Oncol Off J Am Soc Clin Oncol 31:1149–1156
Sebban C, Dussart S, Fuhrmann C et al (2008) Oral moxifloxacin or intravenous ceftriaxone for the treatment of low-risk neutropenic fever in cancer patients suitable for early hospital discharge. Support Care Cancer 16:1017–1023
Cornely OA, Wicke T, Seifert H, Bethe U, Schwonzen M, Reichert D, Ullmann AJ, Karthaus M, Breuer K, Salzberger B, Diehl V, Fätkenheuer G (2004) Once-daily oral levofloxacin monotherapy versus piperacillin/tazobactam three times a day: a randomized controlled multicenter trial in patients with febrile neutropenia. Int J Hematol 79:74–78
May L, Klein EY, Rothman RE, Laxminarayan R (2014) Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrob Agents Chemother 58:1404–1409
Santos Sanches I, Mato R, de Lencastre H, Tomasz A, CEM/NET Collaborators and the International Collaborators. Patterns of multidrug resistance among methicillin-resistant hospital isolates of coagulase-positive and coagulase-negative staphylococci collected in the international multicenter study RESIST in 1997 and 1998. Microb Drug Resist Larchmt N 2000; 6:199–211
Deresinski S (2005) Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey. Clin Infect Dis Off Publ Infect Dis Soc Am 40:562–573
Dautzenberg MJD, Ossewaarde JM, de Greeff SC, Troelstra A, Bonten MJM (2016) Risk factors for the acquisition of OXA-48-producing Enterobacteriaceae in a hospital outbreak setting: a matched case-control study. J Antimicrob Chemother 71:2273–2279
Cattaneo C, Quaresmini G, Casari S, Capucci MA, Micheletti M, Borlenghi E, Signorini L, Re A, Carosi G, Rossi G (2008) Recent changes in bacterial epidemiology and the emergence of fluoroquinolone-resistant Escherichia coli among patients with haematological malignancies: results of a prospective study on 823 patients at a single institution. J Antimicrob Chemother 61:721–728
Ray GT, Baxter R, DeLorenze GN (2005) Hospital-level rates of fluoroquinolone use and the risk of hospital-acquired infection with ciprofloxacin-nonsusceptible Pseudomonas aeruginosa. Clin Infect Dis Off Publ Infect Dis Soc Am 41:441–449
Sarma JB, Marshall B, Cleeve V, Tate D, Oswald T, Woolfrey S (2015) Effects of fluoroquinolone restriction (from 2007 to 2012) on resistance in Enterobacteriaceae: interrupted time-series analysis. J Hosp Infect 91:68–73
Lafaurie M, Porcher R, Donay J-L, Touratier S, Molina J-M (2012) Reduction of fluoroquinolone use is associated with a decrease in methicillin-resistant Staphylococcus aureus and fluoroquinolone-resistant Pseudomonas aeruginosa isolation rates: a 10 year study. J Antimicrob Chemother 67:1010–1015
Uys A, Rapoport BL, Anderson R (2004) Febrile neutropenia: a prospective study to validate the Multinational Association of Supportive Care of Cancer (MASCC) risk-index score. Support Care Cancer 12:555–560
Klastersky J (2004) Management of fever in neutropenic patients with different risks of complications. Clin Infect Dis Off Publ Infect Dis Soc Am 39(Suppl 1):S32–S37
Rosa RG, dos Santos RP, Goldani LZ (2014) Mortality related to coagulase-negative staphylococcal bacteremia in febrile neutropenia: a cohort study. Can J Infect Dis Med Microbiol 25:e14–e17
Gedik H, Şimşek F, Kantürk A et al (2014) Bloodstream infections in patients with hematological malignancies: which is more fatal – cancer or resistant pathogens? Ther Clin Risk Manag 10:743–752
Samonis G, Vardakas KZ, Maraki S et al (2013) A prospective study of characteristics and outcomes of bacteremia in patients with solid organ or hematologic malignancies. Support Care Cancer 21:2521–2526
Gudiol C, Bodro M, Simonetti A et al (2013) Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 19:474–479
Zhang S, Wang Q, Ling Y, Hu X (2015) Fluoroquinolone resistance in bacteremic and low risk febrile neutropenic patients with cancer. BMC Cancer 15 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326398/
Todeschini G, Franchini M, Tecchio C et al (1998) Improved prognosis of Pseudomonas aeruginosa bacteremia in 127 consecutive neutropenic patients with hematologic malignancies. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 3:99–104
Aliaga L, Mediavilla JD, Cobo F (2002) A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J Med Microbiol 51:615–619
Kang C-I, Kim S-H, Kim H-B et al (2003) Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis Off Publ Infect Dis Soc Am 37:745–751
Elting LS, Rubenstein EB, Rolston KV, Bodey GP (1997) Outcomes of bacteremia in patients with cancer and neutropenia: observations from two decades of epidemiological and clinical trials. Clin Infect Dis Off Publ Infect Dis Soc Am 25:247–259
Kim M, Ahn S, Kim WY et al (2017) Predictive performance of the quick Sequential Organ Failure Assessment score as a screening tool for sepsis, mortality, and intensive care unit admission in patients with febrile neutropenia. Support Care Cancer 25:1557–1562
European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe in 2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2015. Available at: https://www.google.fr/search?q=European+Centre+for+Disease+Prevention+and+Control.+Antimicrobial+resistance+surveillance+in+Europe+in+2014. Accessed 7 Apr 2018
Smith TJ, Bohlke K, Lyman GH, Carson KR, Crawford J, Cross SJ, Goldberg JM, Khatcheressian JL, Leighl NB, Perkins CL, Somlo G, Wade JL, Wozniak AJ, Armitage JO, American Society of Clinical Oncology (2015 Oct 1) Recommendations for the use of WBC growth factors: American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol 33(28):3199–3212. https://doi.org/10.1200/JCO.2015.62.3488
Acknowledgments
We thank Jeffrey Ashram for editing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The National Data Protection Authority (Commission Nationale Informatique et Libertés), which is responsible for protection of individual data in France, approved the panel and its procedures.
Conflict of interest
AJ received travel grants for conferences from Pierre Fabre, Sanofi, Pfizer, and Ipsen.
BR received travel grants for conferences from Pfizer, Gilead, and Astellas, and speaker’s fees from Merck/MSD, Gilead, and Basilea.
AM received travel grants for conferences from MSD, EUMEDICA, and bioMérieux.
The other authors declared no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 36Â kb)
Rights and permissions
About this article
Cite this article
Joncour, A., Puyade, M., Michaud, A. et al. Is current initial empirical antibiotherapy appropriate to treat bloodstream infections in short-duration chemo-induced febrile neutropenia?. Support Care Cancer 28, 3103–3111 (2020). https://doi.org/10.1007/s00520-019-05113-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00520-019-05113-4