Skip to main content

Advertisement

Log in

Intranasal therapy with opioids for children and adolescents with cancer: results from clinical studies

  • Review Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Opioids are essential for the treatment of pain, which is a serious symptom for children and adolescents affected by cancer. Intranasal opioids may be very useful for the treatment of breakthrough pain in children and adolescents with cancer, for their little invasiveness, ease of administration, rapid onset of action, and high bioavailability. Intranasal drug delivery may be influenced by anatomical and physiological factors (nasal mucosa absorption area, mucociliary clearance, enzymatic activity, anatomical anomalies, chronic or inflammatory alterations of nasal mucosa), drug-related factors (molecular weight, solubility), and delivery device. Fentanyl is a lipophilic opioid commonly proposed for intranasal use among pediatric patients, but no studies have been conducted yet about intranasal use of other available opioids for management of pediatric cancer pain. In this review, we analyze several elements which may influence absorption of intranasal opioids in children and adolescents, with a focus on pharmacokinetics and therapeutic aspects of each opioid currently available for intranasal use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mercadante S (2004) Cancer pain management in children. Palliat Med 18:654–662

    Article  PubMed  Google Scholar 

  2. Ruggiero A, Coccia P, Arena R, Maurizi P, Battista A, Ridola V, Attinà G, Riccardi R (2013) Efficacy and safety of transdermal buprenorphine in the management of children with cancer-related pain. Pediatr Blood Cancer 60:433–437

    Article  CAS  PubMed  Google Scholar 

  3. Murphy A, O'Sullivan R, Wakai A et al (2014) Intranasal fentanyl for the management of acute pain in children. Cochrane Database Syst Rev 10(10):CD009942. https://doi.org/10.1002/14651858.CD009942.pub2

    Article  Google Scholar 

  4. Del Pizzo J, Callahan JM (2014) Intranasal medications in pediatric emergency medicine. Pediatr Emerg Care 30(7):496–501; quiz 502–4. https://doi.org/10.1097/PEC.0000000000000171

  5. Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297(1):1–13

    Article  CAS  PubMed  Google Scholar 

  6. Salib RJ, Harries PG, Nair SB, Howarth PH (2008) Mechanisms and mediators of nasal symptoms in non-allergic rhinitis. Clin Exp Allergy 38(3):393–404

    Article  CAS  PubMed  Google Scholar 

  7. Newman SP, Morén F, Clarke SW (1987) Deposition pattern from a nasal pump spray. Rhinology 25(2):77–82

    CAS  PubMed  Google Scholar 

  8. Wolfe TR, Braude DA (2010) Intranasal medication delivery for children: a brief review and update. Pediatrics 126(3):532–537

    Article  PubMed  Google Scholar 

  9. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC (2007) Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337(1–2):1–24

    Article  CAS  PubMed  Google Scholar 

  10. Arora P, Sharma S, Garg S (2002) Permeability issues in nasal drug delivery. Drug Discov Today 7(18):967–975

    Article  CAS  PubMed  Google Scholar 

  11. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180

    Article  CAS  PubMed  Google Scholar 

  12. Jiang L, Gao L, Wang X, Tang L, Ma J (2010) The application of mucoadhesive polymers in nasal drug delivery. Drug Dev Ind Pharm 36(3):323–336

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Zhang QY, Liu D et al (2005) Expression of cytochrome p450 and other biotransformation genes in fetal and adult human nasal mucosa. Drug Metab Dispos 33:1423–1428

    Article  CAS  PubMed  Google Scholar 

  14. Pandey RK, Bahetwar SK, Saksena AK, Chandra G (2011) A comparative evaluation of drops versus atomized administration of intranasal ketamine for the procedural sedation of young uncooperative pediatric dental patients: a prospective crossover trial. J Clin Pediatr Dent Fall 36(1):79–84

    Article  CAS  Google Scholar 

  15. Leow KP, Smith MT, Watt JA, Williams BE, Cramond T (1992) Comparative oxycodone pharmacokinetics in humans after intravenous, oral, and rectal administration. Ther Drug Monit 14:479–484

    Article  CAS  PubMed  Google Scholar 

  16. Tong X, Dong J, Shang Y, Inthavong K, Tu J (2016) Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Comput Biol Med 1(77):40–48

    Article  CAS  Google Scholar 

  17. Mercadante S, Portenoy RK (2016) Breakthrough cancer pain: twenty-five years of study. Pain 157(12):2657–2663

    Article  CAS  PubMed  Google Scholar 

  18. Westerling D, Persson C, Hoglund P (1995) Plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide after intravenous and oral administration to healthy volunteers: relationship to nonanalgesic actions. Ther Drug Monit 17:287–301

    Article  CAS  PubMed  Google Scholar 

  19. Illum L, Watts P, Fisher AN et al (2002) Intranasal delivery of morphine. J Pharmacol Exp Ther 301:391–400

    Article  CAS  PubMed  Google Scholar 

  20. Pavis H, Wilcock A, Edgecombe J, Carr D, Manderson C, Church A, Fisher A (2002) Pilot study of nasal morphine–chitosan for the relief of breakthrough pain in patients with cancer. J Pain Symptom Manag 24:598–602

    Article  CAS  Google Scholar 

  21. Stoker DG, Reber KR, Waltzman LS, Ernst C, Hamilton D, Gawarecki D, Mermelstein F, McNicol E, Wright C, Carr DB (2008) Analgesic efficacy and safety of morphine–chitosan nasal solution in patients with moderate to severe pain following orthopedic surgery. Pain Med 9:3–12

    Article  PubMed  Google Scholar 

  22. Takala A, Kaasalainen V, Seppala T, Kalso E, Olkkola KT (1997) Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta Anaesthesiol Scand 41:309–312

    Article  CAS  PubMed  Google Scholar 

  23. Lofwall MR, Moody DE, Fang WB, Nuzzo PA, Walsh SL (2012) Pharmacokinetics of intranasal crushed OxyContin and intravenous oxycodone in nondependent prescription opioid abusers. J Clin Pharmacol 52:600–606

    Article  CAS  PubMed  Google Scholar 

  24. Coda BA, Rudy AC, Archer SM, Wermeling DP (2003) Pharmacokinetics and bioavailability of single-dose intranasal hydromorphone hydrochloride in healthy volunteers. Anesth Analg 97:117–123

    Article  CAS  PubMed  Google Scholar 

  25. Wermeling DP, Clinch T, Rudy AC, Dreitlein D, Suner S, Lacouture PG (2010) A multicenter, open-label, exploratory doseranging trial of intranasal hydromorphone for managing acute pain from traumatic injury. J Pain 11:24–31

    Article  CAS  PubMed  Google Scholar 

  26. Kaasa S, Moksnes K, Nolte T et al (2010) Pharmacokinetics of intranasal fentanyl spray in patients with cancer and breakthrough pain. J Opioid Manag 6:17–26

    Article  PubMed  Google Scholar 

  27. Kress HG, Oronska A, Kaczmarek Z et al (2009) Efficacy and tolerability of intranasal fentanyl spray 50 to 200 microg for breakthrough pain in patients with cancer: a phase III, multinational, randomized, doubleblind, placebo-controlled, crossover trial with a 10-month, open-label extension treatment period. Clin Ther 31:1177–1191

    Article  CAS  PubMed  Google Scholar 

  28. Christrup LL, Foster D, Popper L, Troen T, Upton R (2008) Pharmacokinetics, efficacy, and tolerability of fentanyl following intranasal versus intravenous administration in adults undergoing third-molar extraction: a randomized, double-blind, double-dummy, two-way, cross-over study. Clin Ther 30:469–481

    Article  CAS  PubMed  Google Scholar 

  29. Fisher A, Watling M, Smith A, Knight A (2010) Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100–800 mcg in healthy volunteers. Int J Clin Pharmacol Ther 48:860–867

    Article  CAS  PubMed  Google Scholar 

  30. Fisher A, Watling M, Smith A, Knight A (2010) Pharmacokinetic comparisons of three nasal fentanyl formulations; pectin, chitosan and chitosan–poloxamer 188. Int J Clin Pharmacol Ther 48:138–145

    Article  CAS  PubMed  Google Scholar 

  31. Nave R, Sides EH, Colberg T et al. (2009) Pharmacokinetics of intranasal fentanyl spray (INFS) in subjects with common cold. 6th congress of the European federation of IASP chapters, Lisbon

  32. Borland ML, Bergesio R, Pascoe EM, Turner S, Woodger S (2005) Intranasal fentanyl is an equivalent analgesic to oral morphine in paediatric burns patients for dressing changes: a randomised double blind crossover study. Burns 31:831–837

    Article  CAS  PubMed  Google Scholar 

  33. Mudd S (2011) Intranasal fentanyl for pain management in children: a systematic review of the literature. J Pediatr Healthcare 25:316–322

    Article  Google Scholar 

  34. Hansen MS, Mathiesen O, Trautner S et al (2012) Intranasal fentanyl in the treatment of acute pain: a systematic review. Acta Anaesthesiol Scand 56:407–419

    Article  CAS  PubMed  Google Scholar 

  35. Verghese ST, Hannallah RS, Brennan M, Yarvitz JL, Hummer KA, Patel KM, He J, McCarter R (2008) The effect of intranasal administration of remifentanil on intubating conditions and airway response after sevoflurane induction of anesthesia in children. Anesth Analg 107:1176–1118

    Article  CAS  PubMed  Google Scholar 

  36. Lundeberg S, Roelofse JA (2011) Aspects of pharmacokinetics and pharmacodynamics of sufentanil in pediatric practice. Paediatr Anaesth 21(3):274–279

    Article  PubMed  Google Scholar 

  37. Karl HW, Keifer AT, Rosenberge JL et al (1992) Comparison of the safety and efficacy of intranasal midazolam or sufentanil for preinduction of anesthesia in pediatric patients. Anesthesiology 76(2):209–215

    Article  CAS  PubMed  Google Scholar 

  38. Zedie N, Amory DW, Wagner BK, O’Hara DA (1996) Comparison of intranasal midazolam and sufentanil premedication in pediatric outpatients. Clin Pharmacol Ther 59(3):341–348

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen BN, Friis SM, Romsing J et al (2014) Intranasal sufentanil/ketamine analgesia inchildren. Paediatr Anaesth 24(2):170–180

    Article  PubMed  Google Scholar 

  40. Barton ED, Colwell CB, Wolfe T, Fosnocht D, Gravitz C, Bryan T, Dunn W, Benson J, Bailey J (2005) Efficacy of intranasal naloxone as a needleless alternative for treatment of opioid overdose in the prehospital setting. J Emerg Med 29:265–271

    Article  PubMed  Google Scholar 

  41. Dowling J, Isbister GK, Kirkpatrick CM, Naidoo D, Graudins A (2008) Population pharmacokinetics of intravenous, intramuscular, and intranasal naloxone in human volunteers. Ther Drug Monit 30:490–496

    CAS  PubMed  Google Scholar 

  42. Vanky E, Hellmundt L, Bondesson U, Eksborg S, Lundeberg S (2017) Pharmacokinetics after a single dose of naloxone administered as a nasal spray in healthy volunteers. Acta Anaesthesiol Scand 61(6):636–640

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Fondazione per l’Oncologia Pediatrica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Triarico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triarico, S., Capozza, M.A., Mastrangelo, S. et al. Intranasal therapy with opioids for children and adolescents with cancer: results from clinical studies. Support Care Cancer 27, 3639–3645 (2019). https://doi.org/10.1007/s00520-019-04854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-019-04854-6

Keywords

Navigation