Skip to main content

Advertisement

Log in

Sestrin family of genes and their role in cancer-related fatigue

Supportive Care in Cancer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. National Comprehensive Cancer Network. NCCC Clinical Practice Guidelines in Oncology: cancer-related fatigue, p. FT-1. 2016 Retrieved from: http://oralcancerfoundation.org/wp-content/uploads/2016/10/fatigue.pdf

  2. Wang XS (2008) Pathophysiology of cancer-related fatigue. Clin J Oncol Nurs 12:11–20. https://doi.org/10.1188/08.cjon.s2.11-20

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morrow GR, Andrews PL, Hickok JT, Roscoe JA, Matteson S (2002) Fatigue associated with cancer and its treatment. Support Care Cancer 10:389–398. https://doi.org/10.1007/s005200100293

    Article  PubMed  Google Scholar 

  4. Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, Saligan LN (2014) Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin 1:12–23. https://doi.org/10.1016/j.bbacli.2014.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodgers C, Sanborn C, Taylor O, Gundy P, Pasvogel A, Moore IM, Hockenberry MJ (2016) Fatigue and oxidative stress in children undergoing leukemia treatment. Biol Res Nur 18:515–520. https://doi.org/10.1177/1099800416647794

    Article  CAS  Google Scholar 

  6. Kobayashi H, Ogawa K, Kawahara N, Iwai K, Niiro E, Morioka S, Yamada Y (2017) Sequential molecular changes and dynamic oxidative stress in high-grade serous ovarian carcinogenesis. Free Radic Res 51:755–764. https://doi.org/10.1080/10715762.2017.1383605

    Article  PubMed  CAS  Google Scholar 

  7. Dong W, Keibler MA, Stephanopoulos G (2017) Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metab En 43:113–124. https://doi.org/10.1016/j.ymben.2017.02.002

    Article  CAS  Google Scholar 

  8. Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17. https://doi.org/10.1186/2049-3002-2-17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gong B, Chen Q, Almasan A (1998) Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat Res 150:505–512

    Article  PubMed  CAS  Google Scholar 

  10. Hagenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ (2012) FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sc 125:1191–1203. https://doi.org/10.1242/jcs.092098

    Article  CAS  Google Scholar 

  11. Hsiao CP, Wang D, Kaushal A, Saligan L (2013) Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs 36:189–197. https://doi.org/10.1097/NCC.0b013e318263f514

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsiao CP, Wang D, Kaushal A, Chen MK, Saligan L (2014) Differential expression of genes related to mitochondrial biogenesis and bioenergetics in fatigued prostate cancer men receiving external beam radiation therapy. J Pain Symptom Manag 48:1080–1090. https://doi.org/10.1016/j.jpainsymman.2014.03.010

    Article  Google Scholar 

  13. Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Meta 18:792–801. https://doi.org/10.1016/j.cmet.2013.08.018

    Article  CAS  Google Scholar 

  14. Dai YJ, Qiu YB, Jiang R, Xu M, Zhao L, Chen GG, Liu ZM (2017) Concomitant high expression of ERalpha36, EGFR and HER2 is associated with aggressive behaviors of papillary thyroid carcinomas. Sci Rep 7:12279. https://doi.org/10.1038/s41598-017-12478

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saligan LN, Hsiao CP, Wang D, Wang XM, St John L, Kaushal A et al (2013) Upregulation of alpha-synuclein during localized radiation therapy signals the association of cancer-related fatigue with the activation of inflammatory and neuroprotective pathways. Brain Behav Immun 27:63–70. https://doi.org/10.1016/j.bbi.2012.09.009

    Article  PubMed  CAS  Google Scholar 

  16. Kim H, An S, Ro SH, Teixeira F, Park GJ, Kim C et al (2015) Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun 6:10025. https://doi.org/10.1038/ncomms10025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Parmigiani A, Budanov AV (2016) Sensing the environment through Sestrins: implications for cellular metabolism. Int Rev Cell Mol Biol 327:1–42. https://doi.org/10.1016/bs.ircmb.2016.05.003

    Article  PubMed  CAS  Google Scholar 

  18. Chen KB, Xuan Y, Shi WJ, Chi F, Xing R, Zeng YC (2016) Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer. Am J Transl Res 8:1903–1909

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I et al (2016) Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife 5:12204. https://doi.org/10.7554/eLife.12204

    Article  Google Scholar 

  20. Sanli T, Linher-Melville K, Tsakiridis T, Singh G (2012) Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS One 7:32035. https://doi.org/10.1371/journal.pone.0032035

    Article  CAS  Google Scholar 

  21. Kopnin PB, Agapova LS, Kopnin BP, Chumakov PM (2007) Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res 67:4671–4678. https://doi.org/10.1158/0008-5472.can-06-2466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rhee SG, Bae SH (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med 88:205–211. https://doi.org/10.1016/j.freeradbiomed.2015.06.007

    Article  PubMed  CAS  Google Scholar 

  23. Woo HA, Bae SH, Park S, Rhee SG (2009) Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid Redox Signa 11:739–745. https://doi.org/10.1089/ars.2008.2360

    Article  CAS  Google Scholar 

  24. Rai N, Kumar R, Desai GR, Venugopalan G, Shekha S, Chatterjee P et al (2016) Relative alterations in blood-based levels of Sestrin in Alzheimer’s disease and mild cognitive impairment patients. J Alzheimers Dis 54:1147–1155. https://doi.org/10.3233/jad-160479

    Article  PubMed  CAS  Google Scholar 

  25. Kallenborn-Gerhardt W, Lu R, Syhr KM, Heidler J, von Melchner H, Geisslinger G et al (2013) Antioxidant activity of sestrin 2 controls neuropathic pain after peripheral nerve injury. Antioxid Redox Signal 19:2013–2023. https://doi.org/10.1089/ars.2012.4958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Broderick G, Craddock RC, Whistler T, Taylor R, Klimas N, Unger ER (2006) Identifying illness parameters in fatiguing syndromes using classical projection methods. Pharmacogenomics 7:407–419. https://doi.org/10.2217/14622416.7.3.407

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez VJ, Abbas-Aghababazadeh F, Fridley BL, Ghansah T, Saligan LN (2018) Expression of Sestrin genes in radiotherapy for prostate cancer and its association with fatigue: a proof-of-concept study. Biol Res Nurs 1099800417749319:218–226. https://doi.org/10.1177/1099800417749319

    Article  CAS  Google Scholar 

Download references

Funding

This article was made possible by the National Institute of Nursing Research of the National Institutes of Health under Award Number F32NR016618. Research reported in this publication was supported by the National Institute of Nursing Research Intramural Program at NIH, the ONS Foundation/ONS Foundation Endowment Dissertation Research Grant, the Kansas University, School of Nursing, the Crighton Award, the Ruth O. McKibben Alumni Research Award, and the Sousa Award of Excellence; KU National Institute of Health grant awards P30 CA168524 and P20 GM103418R01 GM28157, U19 GM61388; and UPR National Institute of Health grant awards 2U54MD007587 and CA096297/CA096300.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to this study and have seen and approved the final version of the manuscript.

Corresponding author

Correspondence to Velda J. Gonzalez-Mercado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Mercado, V.J., Fridley, B.L. & Saligan, L.N. Sestrin family of genes and their role in cancer-related fatigue. Support Care Cancer 26, 2071–2074 (2018). https://doi.org/10.1007/s00520-018-4139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-018-4139-8

Navigation