Skip to main content
Log in

Evaluating the effects of lenalidomide induction therapy on peripheral stem cells collection in patients undergoing autologous stem cell transplant for multiple myeloma

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Introduction

Lenalidomide (LEN) is a relatively new and very effective therapy for multiple myeloma (MM). Prior LEN therapy is associated with an increased risk of peripheral blood stem cell collection (PBSC) failure, particularly with filgrastim (G-CSF) alone. We performed a retrospective chart review of 319 consecutive MM patients who underwent apheresis to collect PBSCs for the first autologous stem cell transplant (ASCT).

Results

The median number of PBSCs collected in the LEN (+) group was significantly less than the LEN (−) group (6.34 vs. 7.52 × 106 CD34+ cells/kg; p = 0.0004). In addition, the median number of apheresis sessions required for adequate PBSCs collection were significantly more in the LEN (+) group as compared to LEN (−) group (2 vs. 1 sessions; p = 0.002). In the LEN (+) group, there was a negative correlation between PBSCs collected and prior number of cycles of LEN (p = 0.0001). Rate of PBSC collection failure was 9 % in the LEN (+) group and 5 % in the LEN (−) group (p = 0.16). Only six patients who failed PBSC collection with G-CSF were able to collect adequate PBSCs with G-CSF + plerixafor. LEN exposure had no effect on neutrophil or platelet recovery post-ASCT.

Conclusions

Up to four cycles of LEN exposure have minimal negative impact on PBSC collection. Despite prolong exposure of LEN, PBSC collection was adequate for two ASCTs in the majority of patients and post-ASCT engraftment was not longer than expected; however, clinical relevance (complication rate, quality of life, cost) of prolonged LEN exposure on both PBSC and ASCT, should be evaluated in prospective clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zonder JA, Crowley J, Hussein MA et al (2010) Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232). Blood 116(26):5838–5841

    Article  CAS  Google Scholar 

  2. Rajkumar SV, Jacobus S, Callander NS et al (2010) Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 11(1):29–37

    Article  CAS  Google Scholar 

  3. Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Article  CAS  Google Scholar 

  4. Kumar S, Dispenzieri A, Lacy MQ et al (2007) Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21:2035–2042

    Article  CAS  Google Scholar 

  5. Popat U, Saliba R, Thandi R et al (2009) Impairment of filgrastim induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 15:718–723

    Article  Google Scholar 

  6. Attal M, Harousseau JL, Stoppa AM et al (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 335:91–97

    Article  CAS  Google Scholar 

  7. Child JA, Morgan GJ, Davies FE et al (2003) High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 348(19):1875–1883

    Article  CAS  Google Scholar 

  8. Bensinger W, Appelbaum F, Rowley S et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13(10):2547–2555

    Article  CAS  Google Scholar 

  9. Tricot G, Jagannath S, Vesole D et al (1995) Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 85(2):588–596

    CAS  PubMed  Google Scholar 

  10. Gianni M, Alessandro S, Siena M et al (1989) Granulocyte-macrophage colony-stimulating factor to harvest circulating haematopoietic stem cells for autotransplantation. Lancet 334(8663):580–585

    Article  Google Scholar 

  11. Mark T, Stern J, Furst JR et al (2008) Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant 14:795–798

    Article  CAS  Google Scholar 

  12. DiPersio JF, Stadtmauer EA, Nademanee A et al (2009) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113(23):5720–5726

    CAS  PubMed  Google Scholar 

  13. Malard F, Kröger N, Gabriel IH et al (2012) Plerixafor for autologous peripheral blood stem cell mobilization in patients previously treated with fludarabine or lenalidomide. Biol Blood Marrow Transplant 18(2):314–317

    Article  CAS  Google Scholar 

  14. Horwitz ME, Chute JP, Gasparetto C et al (2012) Preemptive dosing of plerixafor given to poor stem cell mobilizers on day 5 of G-CSF administration. Bone Marrow Transplant 47:1051–1055

    Article  CAS  Google Scholar 

  15. Kumar S, Giralt S, Stadtmauer EA et al (2009) International Myeloma Working Group. Mobilization in myeloma revisited: IMWG consensus perspectives on stem cell collection following initial therapy with thalidomide-, lenalidomide-, or bortezomib-containing regimens. Blood 114(9):1729–1735

    Article  CAS  Google Scholar 

  16. Wu L, Adams M, Carter T et al (2008) Lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab treated CD20+ tumor cells. Clin Cancer Res 14:4650–4657

    Article  CAS  Google Scholar 

  17. Chang DH, Liu N, Klimek V et al (2006) Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 108:618–621

    Article  CAS  Google Scholar 

  18. Koh KR, Janz M, Mapara MY et al (2005) Immunomodulatory derivative of thalidomide (IMiD CC-4047) induces a shift in lineage commitment by suppressing erythropoiesis and promoting myelopoiesis. Blood 105(10):3833–3840

    Article  CAS  Google Scholar 

  19. Niesvizky R, Naib T, Christos PJ et al (2007) Lenalidomide-induced myelosuppression is associated with renal dysfunction: adverse events evaluation of treatment-naïve patients undergoing front-line lenalidomide and dexamethasone therapy. Br J Haematol 138(5):640–643

    Article  CAS  Google Scholar 

  20. Cavallo F, Bringhen S, Milone G et al (2011) Stem cell mobilization in patients with newly diagnosed multiple myeloma after lenalidomide induction therapy. Leukemia 25(10):1627–1631

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Muneer H. Abidi: Speaker for Millennium Pharmaceutical

Jeffrey Zonder: Advisory Board for Celgene Pharmaceutical

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneer H. Abidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhutani, D., Zonder, J., Valent, J. et al. Evaluating the effects of lenalidomide induction therapy on peripheral stem cells collection in patients undergoing autologous stem cell transplant for multiple myeloma. Support Care Cancer 21, 2437–2442 (2013). https://doi.org/10.1007/s00520-013-1808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-013-1808-5

Keywords

Navigation