Skip to main content

Advertisement

Log in

Cardiorespiratory and neuromuscular deconditioning in fatigued and non-fatigued breast cancer survivors

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

Fatigue is one of the most commonly reported side effects during treatment for breast cancer and can persist following treatment completion. Cancer-related fatigue after treatment is multifactorial in nature, and one hypothesized mechanism is cardiorespiratory and neuromuscular deconditioning. The purpose of this study was to compare cardiorespiratory and neuromuscular function in breast cancer survivors who had completed treatment and met the specified criteria for cancer-related fatigue and a control group of breast cancer survivors without fatigue.

Methods

Participants in the fatigue (n = 16) and control group (n = 11) performed a maximal exercise test on a cycle ergometer for determination of peak power, power at lactate threshold, and VO2 peak. Neuromuscular fatigue was induced with a sustained submaximal contraction of the right quadriceps. Central fatigue (failure of voluntary activation) was evaluated using twitch interpolation, and peripheral fatigue was measured with an electrically evoked twitch.

Results

Power at lactate threshold was lower in the fatigue group (p = 0.05). There were no differences between groups for power at lactate threshold as percentage of peak power (p = 0.10) or absolute or relative VO2 peak (p = 0.08 and 0.33, respectively). When adjusted for age, the fatigue group had a lower power at lactate threshold (p = 0.02) and absolute VO2 peak (p = 0.03). There were no differences between groups in change in any neuromuscular parameters after the muscle-fatiguing protocol.

Conclusions

Findings support the hypothesis that cardiorespiratory deconditioning may play a role in the development and persistence of cancer-related fatigue following treatment. Future research into the use of exercise training to reduce cardiorespiratory deconditioning as a treatment for cancer-related fatigue is warranted to confirm these preliminary findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Hofman M, Ryan JL, Figueroa-Moseley CD, Jean-Pierre P, Morrow GR (2007) Cancer-related fatigue: the scale of the problem. Oncologist 12(Suppl 1):4–10

    Article  PubMed  Google Scholar 

  2. Holley S (2000) Cancer-related fatigue. Suffering a different fatigue. Cancer Pract 8(2):87–95

    Article  PubMed  CAS  Google Scholar 

  3. Bower JE, Ganz PA, Desmond KA, Rowland JH, Meyerowitz BE, Belin TR (2000) Fatigue in breast cancer survivors: occurrence, correlates, and impact on quality of life. J Clin Oncol 18(4):743–753

    PubMed  CAS  Google Scholar 

  4. Dimeo FC (2001) Effects of exercise on cancer-related fatigue. Cancer 92(6 Suppl):1689–1693

    Article  PubMed  CAS  Google Scholar 

  5. Geinitz H, Zimmermann FB, Thamm R, Keller M, Busch R, Molls M (2004) Fatigue in patients with adjuvant radiation therapy for breast cancer: long-term follow-up. J Cancer Res Clin Oncol 130(6):327–333. doi:10.1007/s00432-003-0540-9

    Article  PubMed  Google Scholar 

  6. Al-Majid S, McCarthy DO (2001) Cancer-induced fatigue and skeletal muscle wasting: the role of exercise. Biol Res Nurs 2(3):186–197

    Article  PubMed  CAS  Google Scholar 

  7. Morrow GR, Shelke AR, Roscoe JA, Hickok JT, Mustian K (2005) Management of cancer-related fatigue. Cancer Invest 23(3):229–239

    Article  PubMed  Google Scholar 

  8. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10(6):598–605. doi:10.1016/S1470-2045(09)70031-2

    Article  PubMed  Google Scholar 

  9. Irwin ML, Crumley D, McTiernan A, Bernstein L, Baumgartner R, Gilliland FD, Kriska A, Ballard-Barbash R (2003) Physical activity levels before and after a diagnosis of breast carcinoma: the Health, Eating, Activity, and Lifestyle (HEAL) study. Cancer 97(7):1746–1757. doi:10.1002/cncr.11227

    Article  PubMed  Google Scholar 

  10. Wasserman K (1987) Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation 76(6 Pt 2):VI29–VI39

    PubMed  CAS  Google Scholar 

  11. Wasserman K, Beaver WL, Whipp BJ (1990) Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 81(1 Suppl):II14–II30

    PubMed  CAS  Google Scholar 

  12. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med (Auckland, NZ) 39(6):469–490

    Article  Google Scholar 

  13. Peterson BMR, Chris P, Dallow K, Hayward R, Schneider CM (2011) Cancer-related fatigue and the impact of psychological and physiological variables. Med Sci Sports Exerc 43(5):562

    Google Scholar 

  14. Yavuzsen T, Davis MP, Ranganathan VK, Walsh D, Siemionow V, Kirkova J, Khoshknabi D, Lagman R, LeGrand S, Yue GH (2009) Cancer-related fatigue: central or peripheral? J Pain Symptom Manage 38(4):587–596. doi:10.1016/j.jpainsymman.2008.12.003

    Article  PubMed  Google Scholar 

  15. Monga U, Jaweed M, Kerrigan AJ, Lawhon L, Johnson J, Vallbona C, Monga TN (1997) Neuromuscular fatigue in prostate cancer patients undergoing radiation therapy. Arch Phys Med Rehabil 78(9):961–966

    Article  PubMed  CAS  Google Scholar 

  16. Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    PubMed  CAS  Google Scholar 

  17. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586(1):11–23. doi:10.1113/jphysiol.2007.139477

    Article  PubMed  CAS  Google Scholar 

  18. Evans WJ, Lambert CP (2007) Physiological basis of fatigue. Am J Phys Med Rehabil 86(1 Suppl):S29–S46

    Article  PubMed  Google Scholar 

  19. Cella D, Davis K, Breitbart W, Curt G (2001) Cancer-related fatigue: prevalence of proposed diagnostic criteria in a United States sample of cancer survivors. J Clin Oncol 19(14):3385–3391

    PubMed  CAS  Google Scholar 

  20. Schneider J, Dudziak R, Westphal K, Vettermann J (1997) The i-STAT analyzer. A new, hand-held device for the bedside determination of hematocrit, blood gases, and electrolytes. Anaesthesist 46(8):704–714

    Article  PubMed  CAS  Google Scholar 

  21. Patel KV (2008) Epidemiology of anemia in older adults. Semin Hematol 45(4):210–217. doi:10.1053/j.seminhematol.2008.06.006

    Article  PubMed  Google Scholar 

  22. Tanner RK, Fuller KL, Ross ML (2010) Evaluation of three portable blood lactate analysers: lactate pro, lactate scout and lactate plus. Eur J Appl Physiol 109(3):551–559. doi:10.1007/s00421-010-1379-9

    Article  PubMed  CAS  Google Scholar 

  23. Klika RJ, Golik KS, Drum SN, Callahan KE, Thorland WG (2011) Comparison of physiological response to cardiopulmonary exercise testing among cancer survivors and healthy controls. Eur J Appl Physiol 111(6):1167–1176. doi:10.1007/s00421-010-1749-3

    Article  PubMed  Google Scholar 

  24. American College of Sports M (2009) ACSM's guidelines for exercise testing and prescription, vol 8. Lippincott, Williams and Wilkins, Philadelphia, pp 91–134

    Google Scholar 

  25. Coyle EF, Martin WH, Ehsani AA, Hagberg JM, Bloomfield SA, Sinacore DR, Holloszy JO (1983) Blood lactate threshold in some well-trained ischemic heart disease patients. J Appl Physiol Respir Environ Exerc Physiol 54(1):18–23

    CAS  Google Scholar 

  26. Brady MJ, Cella DF, Mo F, Bonomi AE, Tulsky DS, Lloyd SR, Deasy S, Cobleigh M, Shiomoto G (1997) Reliability and validity of the Functional Assessment of Cancer Therapy-Breast quality-of-life instrument. J Clin Oncol 15(3):974–986

    PubMed  CAS  Google Scholar 

  27. Yellen SB, Cella DF, Webster K, Blendowski C, Kaplan E (1997) Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 13(2):63–74

    Article  PubMed  CAS  Google Scholar 

  28. Beck AT, Steer RA (1984) Internal consistencies of the original and revised Beck Depression Inventory. J Clin Psychol 40(6):1365–1367

    Article  PubMed  CAS  Google Scholar 

  29. Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G (1978) A questionnaire for the assessment of leisure time physical activities. J Chronic Dis 31(12):741–755

    Article  PubMed  CAS  Google Scholar 

  30. Drouin JS, Young TJ, Beeler J, Byrne K, Birk TJ, Hryniuk WM, Hryniuk LE (2006) Random control clinical trial on the effects of aerobic exercise training on erythrocyte levels during radiation treatment for breast cancer. Cancer 107(10):2490–2495. doi:10.1002/cncr.22267

    Article  PubMed  CAS  Google Scholar 

  31. Dimeo F, Schwartz S, Wesel N, Voigt A, Thiel E (2008) Effects of an endurance and resistance exercise program on persistent cancer-related fatigue after treatment. Ann Oncol 19(8):1495–1499. doi:10.1093/annonc/mdn068

    Article  PubMed  CAS  Google Scholar 

  32. Lane RJ, Barrett MC, Woodrow D, Moss J, Fletcher R, Archard LC (1998) Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 64(3):362–367

    Article  PubMed  CAS  Google Scholar 

  33. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, Leon AS (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(9 Suppl):S498–S504

    PubMed  CAS  Google Scholar 

  34. Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4(2):87–100. doi:10.1007/s11764-009-0110-5

    Article  PubMed  Google Scholar 

  35. Hurley MV, Rees J, Newham DJ (1998) Quadriceps function, proprioceptive acuity and functional performance in healthy young, middle-aged and elderly subjects. Age Ageing 27(1):55–62

    Article  PubMed  CAS  Google Scholar 

  36. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, Schneider CM, von Gruenigen VE, Schwartz AL (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426. doi:10.1249/MSS.0b013e3181e0c112

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Cheryl So for her assistance with data collection and Tanya Ivanova for her assistance with the Biodex equipment and data collection. We would also like to thank the participants their time in participating in this study.

Funding

SN was supported by a Canada Graduate Student Scholarship Master’s Award from Canadian Institutes of Health Research; infrastructure support by Canadian Breast Cancer Foundation BC/Yukon and Canadian Cancer Society BC/Yukon was given to KC.

Conflict of interest

The authors declare they have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin L. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neil, S.E., Klika, R.J., Garland, S.J. et al. Cardiorespiratory and neuromuscular deconditioning in fatigued and non-fatigued breast cancer survivors. Support Care Cancer 21, 873–881 (2013). https://doi.org/10.1007/s00520-012-1600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-012-1600-y

Keywords

Navigation