Skip to main content

Marine phospholipids—a promising new dietary approach to tumor-associated weight loss

Abstract

Goals of work

Advanced tumor disease very often evokes excessive loss of body weight. Among others, fish oil or marine fatty acid ethyl esters were investigated for treatment of cancer cachexia with controversial results. In this study, a new formulation of marine fatty acids was investigated, the marine phospholipids, with more than 50% of phospholipid-bound fatty acids being eicosapentaenoic and docosahexaenoic acid.

Materials and methods

Thirty-one tumor patients with various tumor entities suffering from weight loss were asked to take marine phospholipids (1.5 g/day) as softgel capsules for a period of 6 weeks. Compliance, body weight, appetite, and quality of life as well as the fatty acid profile in plasma and blood cells were monitored; 17 patients could be analyzed.

Main results

Marine phospholipids were very well accepted; low-dose supplementation resulted in a significant increase of eicosapentaenoic and docosahexaenoic acid in plasma phospholipids; therefore, significantly reducing the n − 6 to n − 3 fatty acid ratio. A stabilization of body weight was achieved (median weight change of +0.6% after 6 weeks), while appetite and quality of life improved.

Conclusions

These promising first results encourage further investigation of marine phospholipids in cancer care.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sarhill N, Mahmoud F, Walsh D et al (2003) Evaluation of nutritional status in advanced metastatic cancer. Support Care Cancer 11:652–659. doi:10.1007/s00520-003-0486-0

    Article  CAS  PubMed  Google Scholar 

  2. Tranmer JE, Heyland D, Dudgeon D, Groll D, Squires-Graham M, Coulson K (2003) Measuring the symptom experience of seriously ill cancer and noncancer hospitalized patients near the end of life with the memorial symptom assessment scale. J Pain Symptom Manage 25:420–429. doi:10.1016/S0885-3924(03)00074-5

    Article  PubMed  Google Scholar 

  3. Gagnon B, Bruera E (1998) A review of the drug treatment of cachexia associated with cancer. Drugs 55:675–688. doi:10.2165/00003495-199855050-00005

    Article  CAS  PubMed  Google Scholar 

  4. Dewys WD, Begg C, Lavin PT et al (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med 69:491–497. doi:10.1016/S0149-2918(05)80001-3

    Article  CAS  PubMed  Google Scholar 

  5. Jatoi A (2006) Pharmacologic therapy for the cancer anorexia/weight loss syndrome: a data-driven, practical approach. J Support Oncol 4:499–502

    PubMed  Google Scholar 

  6. Deans C, Wigmore SJ (2005) Systemic inflammation, cachexia and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care 8:265–269. doi:10.1097/01.mco.0000165004.93707.88

    Article  CAS  PubMed  Google Scholar 

  7. Esper DH, Harb WA (2005) The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract 20:369–376. doi:10.1177/0115426505020004369

    Article  PubMed  Google Scholar 

  8. Falconer JS, Fearon KC, Plester CE, Ross JA, Carter DC (1994) Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219:325–331. doi:10.1097/00000658-199404000-00001

    Article  CAS  PubMed  Google Scholar 

  9. Grimble RF (2003) Nutritional therapy for cancer cachexia. Gut 52:1391–1392. doi:10.1136/gut.52.10.1391

    Article  CAS  PubMed  Google Scholar 

  10. Morley JE, Thomas DR, Wilson MM (2006) Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83:735–743

    CAS  PubMed  Google Scholar 

  11. Tisdale MJ (2004) Tumor–host interactions. J Cell Biochem 93:871–877. doi:10.1002/jcb.20246

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122. doi:10.1136/gut.2004.047100

    Article  CAS  PubMed  Google Scholar 

  13. Baburina I, Jackowski S (1999) Cellular responses to excess phospholipid. J Biol Chem 274:9400–9408. doi:10.1074/jbc.274.14.9400

    Article  CAS  PubMed  Google Scholar 

  14. Das UN, Ramos EJ, Meguid MM (2003) Metabolic alterations during inflammation and its modulation by central actions of omega-3 fatty acids. Curr Opin Clin Nutr Metab Care 6:413–419. doi:10.1097/00075197-200307000-00010

    Article  CAS  PubMed  Google Scholar 

  15. Endres S, Ghorbani R, Kelley VE et al (1989) The effect of dietary supplementation with n−3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271

    CAS  PubMed  Google Scholar 

  16. Wigmore SJ, Fearon KC, Maingay JP, Ross JA (1997) Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 92:215–221

    CAS  Google Scholar 

  17. Ramos EJ, Middleton FA, Laviano A et al (2004) Effects of omega-3 fatty acid supplementation on tumor-bearing rats. J Am Coll Surg 199:716–723. doi:10.1016/j.jamcollsurg.2004.07.014

    Article  PubMed  Google Scholar 

  18. Barber MD, Ross JA, Voss AC, Tisdale MJ, Fearon KC (1999) The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer 81:80–86. doi:10.1038/sj.bjc.6690654

    Article  CAS  PubMed  Google Scholar 

  19. Gogos CA, Ginopoulos P, Salsa B, Apostolidou E, Zoumbos NC, Kalfarentzos F (1998) Dietary omega-3 polyunsaturated fatty acids plus vitamin E restore immunodeficiency and prolong survival for severely ill patients with generalized malignancy: a randomized control trial. Cancer 82:395–402. doi:10.1002/(SICI)1097-0142(19980115)82:2<403::AID-CNCR21>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  20. Bruera E, Strasser F, Palmer JL et al (2003) Effect of fish oil on appetite and other symptoms in patients with advanced cancer and anorexia/cachexia: a double-blind, placebo-controlled study. J Clin Oncol 21:129–134. doi:10.1200/JCO.2003.01.101

    Article  CAS  PubMed  Google Scholar 

  21. Fearon KC, Von Meyenfeldt MF, Moses AG et al (2003) Effect of a protein and energy dense n−3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52:1479–1486. doi:10.1136/gut.52.10.1479

    Article  CAS  PubMed  Google Scholar 

  22. Fearon KC, Barber MD, Moses AG et al (2006) Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J Clin Oncol 24:3401–3407. doi:10.1200/JCO.2005.04.5724

    Article  CAS  PubMed  Google Scholar 

  23. Burns CP, Halabi S, Clamon GH et al (1999) Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer and leukemia group B study 9473. Clin Cancer Res 5:3942–3947

    CAS  PubMed  Google Scholar 

  24. Burns CP, Halabi S, Clamon G et al (2004) Phase II study of high-dose fish oil capsules for patients with cancer-related cachexia. Cancer 101:370–378. doi:10.1002/cncr.20362

    Article  CAS  PubMed  Google Scholar 

  25. Jatoi A (2005) Fish oil, lean tissue, and cancer: is there a role for eicosapentaenoic acid in treating the cancer anorexia/weight loss syndrome? Crit Rev Oncol Hematol 55:37–43. doi:10.1016/j.critrevonc.2005.01.004

    Article  PubMed  Google Scholar 

  26. Persson EM, Nilsson RG, Hansson GI et al (2006) A clinical single-pass perfusion investigation of the dynamic in vivo secretory response to a dietary meal in human proximal small intestine. Pharm Res 23:742–751. doi:10.1007/s11095-006-9607-z

    Article  CAS  PubMed  Google Scholar 

  27. Amate L, Gil A, Ramirez M (2001) Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions. J Nutr 131:1250–1255

    CAS  PubMed  Google Scholar 

  28. Zierenberg O, Grundy SM (1982) Intestinal absorption of polyenephosphatidylcholine in man. J Lipid Res 23:1136–1142

    CAS  PubMed  Google Scholar 

  29. Gauster M, Rechberger G, Sovic A et al (2005) Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J Lipid Res 46:1517–1525. doi:10.1194/jlr.M500054-JLR200

    Article  CAS  PubMed  Google Scholar 

  30. Oette K, Kuhn G, Romer A, Niemann R, Gundermann KJ, Schumacher R (1995) Arzneimittelforschung 45:875–879. Absorption of di-linoleoylphosphatidylcholine after oral administration

    Google Scholar 

  31. Wijendran V, Huang MC, Diau GY, Boehm G, Nathanielsz PW, Brenna JT (2002) Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatr Res 51:265–272. doi:10.1203/00006450-200203000-00002

    Article  CAS  PubMed  Google Scholar 

  32. Goustard-Langelier B, Guesnet P, Durand G, Antoine JM, Alessandri JM (1999) n-3 and n-6 fatty acid enrichment by dietary fish oil and phospholipid sources in brain cortical areas and nonneural tissues of formula-fed piglets. Lipids 34:5–16. doi:10.1007/s11745-999-331-6

    Article  CAS  PubMed  Google Scholar 

  33. Buchholz AC, Bartok C, Schoeller DA (2004) The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract 19:433–446. doi:10.1177/0115426504019005433

    Article  PubMed  Google Scholar 

  34. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  35. Taylor LA, Arends J, Hodina AK, Unger C, Massing U (2007) Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis 6:17. doi:10.1186/1476-511X-6-17

    Article  PubMed  Google Scholar 

  36. Taylor LA, Ziroli V, Massing U (2008) Analysis of fatty acid profile in plasma phospholipids by solid-phase extraction in combination with GC. Eur J Lipid Sci Technol (in press)

    Article  CAS  PubMed  Google Scholar 

  37. Aaronson NK, Ahmedzai S, Bergman B et al (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85:365–376. doi:10.1093/jnci/85.5.365

    Article  CAS  PubMed  Google Scholar 

  38. Osoba D, Rodrigues G, Myles J, Zee B, Pater J (1998) Interpreting the significance of changes in health-related quality-of-life scores. J Clin Oncol 16:139–144

    CAS  PubMed  Google Scholar 

  39. Schwemmer M, Aho H, Michel JB (2001) Interleukin-1beta-induced type IIA secreted phospholipase A2 gene expression and extracellular activity in rat vascular endothelial cells. Tissue Cell 33:233–240. doi:10.1054/tice.2000.0163

    Article  CAS  PubMed  Google Scholar 

  40. Wu T, Ikezono T, Angus CW, Shelhamer JH (1996) Tumor necrosis factor-alpha induces the 85-kDa cytosolic phospholipase A2 gene expression in human bronchial epithelial cells. Biochim Biophys Acta 1310:175–184. doi:10.1016/0167-4889(95)00143-3

    Article  PubMed  Google Scholar 

  41. Yamashita S, Ogawa M, Abe T et al (1994) Group II phospholipase A2 in invasive gastric cancer cell line is induced by interleukin 6. Biochem Biophys Res Commun 198:878–884. doi:10.1006/bbrc.1994.1125

    Article  CAS  PubMed  Google Scholar 

  42. Khanapure SP, Garvey DS, Janero DR, Letts LG (2007) Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem 7:311–340. doi:10.2174/156802607779941314

    Article  CAS  PubMed  Google Scholar 

  43. Pidgeon GP, Lysaght J, Krishnamoorthy S et al (2007) Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 26:503–524. doi:10.1007/s10555-007-9098-3

    Article  CAS  PubMed  Google Scholar 

  44. Kriat M, Vion-Dury J, Confort-Gouny S et al (1993) Analysis of plasma lipids by NMR spectroscopy: application to modifications induced by malignant tumors. J Lipid Res 34:1009–1019

    CAS  PubMed  Google Scholar 

  45. Kuliszkiewicz-Janus M, Janus W, Baczynski S (1996) Application of 31P NMR spectroscopy in clinical analysis of changes of serum phospholipids in leukemia, lymphoma and some other non-haematological cancers. Anticancer Res 16:1587–1594

    CAS  PubMed  Google Scholar 

  46. Raffelt K, Moka D, Sullentrop F, Dietlein M, Hahn J, Schicha H (2000) Systemic alterations in phospholipid concentrations of blood plasma in patients with thyroid carcinoma: an in-vitro (31) P high-resolution NMR study. NMR Biomed 13:8–13. doi:10.1002/(SICI)1099-1492(200002)13:1<8::AID-NBM602>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  47. Sullentrop F, Moka D, Neubauer S et al (2002) 31P NMR spectroscopy of blood plasma: determination and quantification of phospholipid classes in patients with renal cell carcinoma. NMR Biomed 15:60–68. doi:10.1002/nbm.758

    Article  CAS  PubMed  Google Scholar 

  48. Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 270:7757–7764. doi:10.1074/jbc.270.13.7757

    Article  CAS  PubMed  Google Scholar 

  49. Faas FH, Dang AQ, White J, Schaefer R, Johnson D (2001) Increased prostatic lysophosphatidylcholine acyltransferase activity in human prostate cancer: a marker for malignancy. J Urol 165:463–468. doi:10.1097/00005392-200102000-00026

    Article  CAS  PubMed  Google Scholar 

  50. Balsinde J, Bianco ID, Ackermann EJ, Conde-Frieboes K, Dennis EA (1995) Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci USA 92:8527–8531. doi:10.1073/pnas.92.18.8527

    Article  CAS  PubMed  Google Scholar 

  51. Xie Y, Gibbs TC, Mukhin YV, Meier KE (2002) Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J Biol Chem 277:32516–32526. doi:10.1074/jbc.M203864200

    Article  CAS  PubMed  Google Scholar 

  52. Jatoi A, Egner J, Loprinzi CL et al (2004) Investigating the utility of serum cytokine measurements in a multi-institutional cancer anorexia/weight loss trial. Support Care Cancer 12:640–644. doi:10.1007/s00520-004-0638-x

    Article  PubMed  Google Scholar 

  53. Persson C, Glimelius B, Ronnelid J, Nygren P (2005) Impact of fish oil and melatonin on cachexia in patients with advanced gastrointestinal cancer: a randomized pilot study. Nutrition 21:170–178. doi:10.1016/j.nut.2004.05.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Dietmar Hopp Stiftungs GmbH and Kirstins Weg e.V. for financial support. Thanks to all of our colleagues who supported the performance of this investigation.

Conflict of interest

The Tumor Biology Center Freiburg has applied for a patent pertaining to the use of marine phospholipids for palliative cancer treatment. The patent is intended to be commercialized. The presented investigation of marine phospholipids was funded in its entirety, including the purchase of the marine phospholipid formulation, by research sponsorship as stated in the acknowledgements section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Massing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, L.A., Pletschen, L., Arends, J. et al. Marine phospholipids—a promising new dietary approach to tumor-associated weight loss. Support Care Cancer 18, 159 (2010). https://doi.org/10.1007/s00520-009-0640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00520-009-0640-4

Keywords

  • Marine phospholipids
  • Cancer
  • Weight loss
  • Marine fatty acids
  • Lyso-phosphatidylcholine